许多高性能作品在分布外(OOD)检测方面使用真实或合成生成的异常数据来正式化模型置信度;但是,它们通常需要重新培训基本网络或专门的模型体系结构。我们的作品表明,嘈杂的嵌入式在OOD对象​​检测的挑战领域中使异常值(Nimgo)成为了很大的异常值。我们假设合成异常值只需要最小化分布(ID)数据的扰动变体即可训练一个歧视器以识别OOD样本 - 而无需昂贵的基本网络重新培训。为了检验我们的假设,我们通过在图像或边界盒级别上应用添加剂噪声扰动来生成一个合成的离群值。然后,对辅助功能监视多层感知器(MLP)进行训练,以使用扰动的ID样品作为代理来检测OOD特征表示。在测试过程中,我们证明辅助MLP将ID样品与最新水平的OOD样品区分开在OpenImages数据集中。广泛的额外消融提供了支持我们假设的经验证据。
translated by 谷歌翻译
我们引入强大的想法,从超比计算到有挑战性领域的分布外(OOD)检测。与基于单个神经网络的单层执行的大多数现有的工作相比,我们使用相似性的半正交投影矩阵来将来自多个层的特征映射投影成公共矢量空间。通过反复应用捆绑操作$ \ oplus $,我们为所有分布类创建特定于特定于特定于特定的描述符向量。在测试时间时,描述符矢量之间的简单高效的余弦相似性计算一致地识别具有比当前最先进的性能更好的ood样本。我们表明,多维网络层的超级融合对于实现最佳的普遍表现至关重要。
translated by 谷歌翻译
Out-of-distribution (OOD) detection has attracted a large amount of attention from the machine learning research community in recent years due to its importance in deployed systems. Most of the previous studies focused on the detection of OOD samples in the multi-class classification task. However, OOD detection in the multi-label classification task remains an underexplored domain. In this research, we propose YolOOD - a method that utilizes concepts from the object detection domain to perform OOD detection in the multi-label classification task. Object detection models have an inherent ability to distinguish between objects of interest (in-distribution) and irrelevant objects (e.g., OOD objects) on images that contain multiple objects from different categories. These abilities allow us to convert a regular object detection model into an image classifier with inherent OOD detection capabilities with just minor changes. We compare our approach to state-of-the-art OOD detection methods and demonstrate YolOOD's ability to outperform these methods on a comprehensive suite of in-distribution and OOD benchmark datasets.
translated by 谷歌翻译
3D对象检测是自动驾驶的重要组成部分,深层神经网络(DNNS)已达到此任务的最新性能。但是,深层模型臭名昭著,因为将高置信度得分分配给分布(OOD)输入,即未从训练分布中得出的输入。检测OOD输入是具有挑战性的,对于模型的安全部署至关重要。已经针对分类任务进行了广泛研究OOD检测,但是它尚未对对象检测任务,特别是基于激光雷达的3D对象检测的注意力。在本文中,我们关注基于激光雷达的3D对象检测的OOD输入的检测。我们制定了OOD输入对于对象检测的含义,并提议适应几种OOD检测方法进行对象检测。我们通过提出的特征提取方法来实现这一目标。为了评估OOD检测方法,我们开发了一种简单但有效的技术,用于为给定的对象检测模型生成OOD对象​​。我们基于KITTI数据集的评估表明,不同的OOD检测方法具有检测特定OOD对象​​的偏差。它强调了联合OOD检测方法的重要性以及在这个方向上进行更多研究。
translated by 谷歌翻译
检测到分布(OOD)数据是一项任务,它正在接受计算机视觉的深度学习领域越来越多的研究注意力。但是,通常在隔离任务上评估检测方法的性能,而不是考虑串联中的潜在下游任务。在这项工作中,我们检查了存在OOD数据(SCOD)的选择性分类。也就是说,检测OOD样本的动机是拒绝它们,以便降低它们对预测质量的影响。我们在此任务规范下表明,与仅在OOD检测时进行评估时,现有的事后方法的性能大不相同。这是因为如果ID数据被错误分类,将分布分配(ID)数据与OOD数据混合在一起的问题不再是一个问题。但是,正确和不正确的预测的ID数据中的汇合变得不受欢迎。我们还提出了一种新颖的SCOD,SoftMax信息保留(SIRC)的方法,该方法通过功能不足信息来增强基于软疗法的置信度得分,以便在不牺牲正确和错误的ID预测之间的分离的情况下,可以提高其识别OOD样品的能力。在各种成像网尺度数据集和卷积神经网络体系结构上进行的实验表明,SIRC能够始终如一地匹配或胜过SCOD的基线,而现有的OOD检测方法则无法做到。
translated by 谷歌翻译
由于其实际重要性,在提高神经网络安全部署方面的实际重要性,最近经济分配(OOD)检测最近受到了很大的关注。其中一个主要挑战是模型往往会对OOD数据产生高度自信的预测,这在ood检测中破坏了驾驶原理,即该模型应该仅对分布式样品充满信心。在这项工作中,我们提出了反应 - 一种简单有效的技术,用于减少对数据数据的模型过度限制。我们的方法是通过关于神经网络内部激活的新型分析,其为OOD分布显示出高度独特的签名模式。我们的方法可以有效地拓展到不同的网络架构和不同的OOD检测分数。我们经验证明,反应在全面的基准数据集套件上实现了竞争检测性能,并为我们的方法进行了理论解释。与以前的最佳方法相比,在ImageNet基准测试中,反应将假阳性率(FPR95)降低25.05%。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
通过增强模型,输入示例,培训集和优化目标,已经提出了各种方法进行分发(OOD)检测。偏离现有工作,我们有一个简单的假设,即标准的离心模型可能已经包含有关训练集分布的足够信息,这可以利用可靠的ood检测。我们对验证这一假设的实证研究,该假设测量了模型激活的模型和分布(ID)迷你批次,发现OOD Mini-Batches的激活手段一直偏离培训数据的培训数据。此外,培训数据的激活装置可以从批量归一化层作为“自由午餐”中有效地计算或从批量归一化层次上检索。基于该观察,我们提出了一种名为神经平均差异(NMD)的新型度量,其比较了输入示例和训练数据的神经手段。利用NMD的简单性,我们提出了一种有效的OOD探测器,通过标准转发通道来计算神经手段,然后是轻量级分类器。广泛的实验表明,在检测精度和计算成本方面,NMD跨越多个数据集和模型架构的最先进的操作。
translated by 谷歌翻译
神经网络在分布中的数据中取得了令人印象深刻的性能,该数据与训练集相同,但可以为这些网络从未见过的数据产生过分自信的结果。因此,至关重要的是要检测输入是否来自分布(OOD),以确保现实世界中部署的神经网络的安全性。在本文中,我们提出了一种简单有效的事后技术Weshort,以减少神经网络对OOD数据的过度自信。我们的方法灵感来自对内部残留结构的观察,该结构显示了捷径层中OOD和分布(ID)数据的分离。我们的方法与不同的OOD检测分数兼容,并且可以很好地推广到网络的不同体系结构。我们在各种OOD数据集上演示了我们的方法,以展示其竞争性能,并提供合理的假设,以解释我们的方法为何起作用。在Imagenet基准测试上,Weshort在假阳性率(FPR95)和接收器操作特征(AUROC)下实现了最先进的性能(在事后方法)上。
translated by 谷歌翻译
在现实世界中的视觉应用中检测分布(OOD)样本(例如分类或对象检测)已成为当今深度学习系统部署的必要前提。已经提出了许多技术,其中已证明基于能量的OOD方法是有希望和令人印象深刻的性能。我们提出了基于语义驱动的能量方法,这是一种端到端的可训练系统,易于优化。我们将分布样品与能量评分和表示分数结合的外部分布样品区分开。我们通过最大程度地降低分布样品的能量来实现这一目标,并同时学习各自的类表征,这些类别更接近和最大化能量以供外分发样品,并将其从已知的类表征进一步推出。此外,我们提出了一种新颖的损失功能,我们称之为群集局灶性损失(CFL),事实证明这很简单,但在学习更好的班级群集中心表示方面非常有效。我们发现,我们的新方法可以增强异常检测,并在共同基准上获得基于能量的模型。与现有基于能量的方法相比,在CIFAR-10和CIFAR-100训练的WideSnet上,我们的模型分别将相对平均假正(以95%的真实正率为95%)降低67.2%和57.4%。此外,我们扩展了对象检测的框架并提高了性能。
translated by 谷歌翻译
Deep neural networks (DNN) have outstanding performance in various applications. Despite numerous efforts of the research community, out-of-distribution (OOD) samples remain significant limitation of DNN classifiers. The ability to identify previously unseen inputs as novel is crucial in safety-critical applications such as self-driving cars, unmanned aerial vehicles and robots. Existing approaches to detect OOD samples treat a DNN as a black box and assess the confidence score of the output predictions. Unfortunately, this method frequently fails, because DNN are not trained to reduce their confidence for OOD inputs. In this work, we introduce a novel method for OOD detection. Our method is motivated by theoretical analysis of neuron activation patterns (NAP) in ReLU based architectures. The proposed method does not introduce high computational workload due to the binary representation of the activation patterns extracted from convolutional layers. The extensive empirical evaluation proves its high performance on various DNN architectures and seven image datasets. ion.
translated by 谷歌翻译
背景。通常,深度神经网络(DNN)概括了从类似于训练集的分布的样本概括。然而,当测试样本从不同的分布中抽出时,DNNS的预测是脆性和不可靠的。这是在现实世界应用中部署的主要关注点,这种行为可能以相当大的成本,例如工业生产线,自治车辆或医疗保健应用。贡献。我们将DNN中的分布(OOD)检测出来作为统计假设检测问题。在我们所提出的框架内产生的测试将证据组合来自整个网络。与以前的检测启发式不同,此框架返回每个测试样本的$ p $ -value。有保证维护I型错误(T1E - 错误地识别OOD样本为ID)进行测试数据。此外,这允许在保持T1E的同时组合多个检测器。在此框架上建立,我们建议一种基于低阶统计数据的新型程序。我们的方法在不接受的EOD基准上的最新方法实现了比较或更好的结果,而无需再培训网络参数或假设测试分配的现有知识 - 并且以计算成本的一小部分。
translated by 谷歌翻译
分布(OOD)检测对于确保机器学习系统的可靠性和安全性至关重要。例如,在自动驾驶中,我们希望驾驶系统在发现在训练时间中从未见过的异常​​场景或对象时,发出警报并将控件移交给人类,并且无法做出安全的决定。该术语《 OOD检测》于2017年首次出现,此后引起了研究界的越来越多的关注,从而导致了大量开发的方法,从基于分类到基于密度到基于距离的方法。同时,其他几个问题,包括异常检测(AD),新颖性检测(ND),开放式识别(OSR)和离群检测(OD)(OD),在动机和方法方面与OOD检测密切相关。尽管有共同的目标,但这些主题是孤立发展的,它们在定义和问题设定方面的细微差异通常会使读者和从业者感到困惑。在这项调查中,我们首先提出一个称为广义OOD检测的统一框架,该框架涵盖了上述五个问题,即AD,ND,OSR,OOD检测和OD。在我们的框架下,这五个问题可以看作是特殊情况或子任务,并且更容易区分。然后,我们通过总结了他们最近的技术发展来审查这五个领域中的每一个,特别关注OOD检测方法。我们以公开挑战和潜在的研究方向结束了这项调查。
translated by 谷歌翻译
在过去的几年中,关于分类,检测和分割问题的3D学习领域取得了重大进展。现有的绝大多数研究都集中在规范的封闭式条件上,忽略了现实世界的内在开放性。这限制了需要管理新颖和未知信号的自主系统的能力。在这种情况下,利用3D数据可以是有价值的资产,因为它传达了有关感应物体和场景几何形状的丰富信息。本文提供了关于开放式3D学习的首次广泛研究。我们介绍了一种新颖的测试床,其设置在类别语义转移方面的难度增加,并且涵盖了内域(合成之间)和跨域(合成对真实)场景。此外,我们研究了相关的分布情况,并开放了2D文献,以了解其最新方法是否以及如何在3D数据上有效。我们广泛的基准测试在同一连贯的图片中定位了几种算法,从而揭示了它们的优势和局限性。我们的分析结果可能是未来量身定制的开放式3D模型的可靠立足点。
translated by 谷歌翻译
Detecting out-of-distribution (OOD) inputs during the inference stage is crucial for deploying neural networks in the real world. Previous methods commonly relied on the output of a network derived from the highly activated feature map. In this study, we first revealed that a norm of the feature map obtained from the other block than the last block can be a better indicator of OOD detection. Motivated by this, we propose a simple framework consisting of FeatureNorm: a norm of the feature map and NormRatio: a ratio of FeatureNorm for ID and OOD to measure the OOD detection performance of each block. In particular, to select the block that provides the largest difference between FeatureNorm of ID and FeatureNorm of OOD, we create Jigsaw puzzle images as pseudo OOD from ID training samples and calculate NormRatio, and the block with the largest value is selected. After the suitable block is selected, OOD detection with the FeatureNorm outperforms other OOD detection methods by reducing FPR95 by up to 52.77% on CIFAR10 benchmark and by up to 48.53% on ImageNet benchmark. We demonstrate that our framework can generalize to various architectures and the importance of block selection, which can improve previous OOD detection methods as well.
translated by 谷歌翻译
为DNNS提供超出分销(OOD)检测对于他们在开放世界中的安全可靠运行至关重要。尽管最近的进展,但目前的作品通常会考虑ood问题中的粗粒度,这不能近似许多实际粒度的任务,其中在分布(ID)数据和OOD数据之间可以预期高粒度(例如,识别野生鸟类分类系统的新型鸟类。在这项工作中,我们首先仔细构建四种大型细粒度测试环境,其中现有方法显示出困难。我们发现当前的方法,包括在DNN培训期间包含大型/多样化异常值的方法,在宽面积上具有较差的覆盖范围,其中良好的谷物样品定位。然后,我们提出了混合异常曝光(MixoE),其通过混合ID数据和培训异常值来实现覆盖的OOD区域,并通过线性衰减将预测置信度线性衰减为从ID到OOD的输入转换来规范模型行为。广泛的实验和分析证明了Mixoe改善细粒环境中的检测的有效性。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
准确地检测出具有不同语义和协变量转移相对于分布的数据(ID)数据的分布外(OOD)数据对于部署安全可靠的模型至关重要。当处理高度结果应用(例如医学成像,自动驾驶汽车等)时,情况尤其如此。目的是设计一个可以接受ID数据有意义变化的检测器,同时还拒绝了OOD制度的示例。在实践中,可以通过使用适当的评分函数(例如能量)来实现一致性来实现此双重目标,并校准检测器以拒绝一组策划的OOD数据(称为离群曝光或不久的OE)。尽管OE方法被广泛采用,但由于现实世界情景的不可预测性,组装代表性的OOD数据集既昂贵又具有挑战性,因此最新设计了无OE探测器的趋势。在本文中,我们做出了一个令人惊讶的发现,即控制对ID变化的概括和暴露于不同(合成)异常值的示例对于同时改善语义和模态转移检测至关重要。与现有方法相反,我们的方法样本在潜在空间中嵌入式体系,并通过负数据扩展构建异常示例。通过一项关于医学成像基准(MedMnist,ISIC2019和NCT)的严格实证研究,我们在语义和模态转移下的现有无OE,OOD检测方法上表现出显着的性能增长(AUROC中的15美元\%-35 \%$)。
translated by 谷歌翻译
Deep neural networks have attained remarkable performance when applied to data that comes from the same distribution as that of the training set, but can significantly degrade otherwise. Therefore, detecting whether an example is out-of-distribution (OoD) is crucial to enable a system that can reject such samples or alert users. Recent works have made significant progress on OoD benchmarks consisting of small image datasets. However, many recent methods based on neural networks rely on training or tuning with both in-distribution and out-of-distribution data. The latter is generally hard to define a-priori, and its selection can easily bias the learning. We base our work on a popular method ODIN 1 [21], proposing two strategies for freeing it from the needs of tuning with OoD data, while improving its OoD detection performance. We specifically propose to decompose confidence scoring as well as a modified input pre-processing method. We show that both of these significantly help in detection performance. Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference in the difficulty of the problem, providing an analysis of when ODIN-like strategies do or do not work.
translated by 谷歌翻译
已知神经网络在输入图像上产生过度自信的预测,即使这些图像不存在(OOD)样本。这限制了神经网络模型在存在OOD样本的实际场景中的应用。许多现有方法通过利用各种提示来确定OOD实例,例如在特征空间,逻辑空间,梯度空间或图像的原始空间中查找不规则模式。相反,本文提出了一种简单的测试时间线性训练(ETLT)用于OOD检测方法。从经验上讲,我们发现输入图像的概率不存在,与神经网络提取的功能令人惊讶地线性相关。具体来说,许多最先进的OOD算法虽然旨在以不同的方式衡量可靠性,但实际上导致OOD得分主要与其图像特征线性相关。因此,通过简单地学习从配对图像特征训练并在测试时间推断的OOD分数的线性回归模型,我们可以为测试实例做出更精确的OOD预测。我们进一步提出了该方法的在线变体,该变体可以实现有希望的性能,并且在现实世界中更为实用。值得注意的是,我们将FPR95从$ 51.37 \%$提高到CIFAR-10数据集的$ 12.30 \%$,最大的SoftMax概率是基本的OOD检测器。在几个基准数据集上进行的广泛实验显示了ETLT对OOD检测任务的功效。
translated by 谷歌翻译