医学成像中各种各样的分布和分布数据使通用异常检测成为一项艰巨的任务。最近,已经开发了许多自我监督的方法,这些方法是对健康数据的端到端模型,并具有合成异常的增强。但是,很难比较这些方法,因为尚不清楚绩效的收益是从任务本身还是围绕其培训管道来进行的。也很难评估一项任务是否可以很好地通用通用异常检测,因为它们通常仅在有限的异常范围内进行测试。为了协助这一点,我们开发了NOOD,该框架适应NNU-NET,以比较自我监督的异常定位方法。通过将综合,自我监督的任务隔离在其余培训过程中,我们对任务进行了更忠实的比较,同时还可以快速简便地评估给定数据集的工作流程。使用此功能,我们实施了当前的最新任务,并在具有挑战性的X射线数据集上对其进行了评估。
translated by 谷歌翻译
我们介绍了一个简单而直观的自我实施任务,自然合成异常(NSA),用于训练仅使用正常培训数据的端到端模型,以实现异常检测和定位。NSA将Poisson图像编辑整合到来自单独图像的各种尺寸的无缝混合缩放贴片。这会产生广泛的合成异常,与以前的自我监督异常检测的数据 - 启发策略相比,它们更像自然的子图像不规则。我们使用天然和医学图像评估提出的方法。我们对MVTEC AD数据集进行的实验表明,经过训练的用于本地NSA异常的模型可以很好地概括地检测现实世界中的先验未知类型的制造缺陷。我们的方法实现了97.2的总检测AUROC,优于所有以前的方法,这些方法在不使用其他数据集的情况下学习。可在https://github.com/hmsch/natural-synthetic-anomalies上获得代码。
translated by 谷歌翻译
We aim at constructing a high performance model for defect detection that detects unknown anomalous patterns of an image without anomalous data. To this end, we propose a two-stage framework for building anomaly detectors using normal training data only. We first learn self-supervised deep representations and then build a generative one-class classifier on learned representations. We learn representations by classifying normal data from the CutPaste, a simple data augmentation strategy that cuts an image patch and pastes at a random location of a large image. Our empirical study on MVTec anomaly detection dataset demonstrates the proposed algorithm is general to be able to detect various types of real-world defects. We bring the improvement upon previous arts by 3.1 AUCs when learning representations from scratch. By transfer learning on pretrained representations on ImageNet, we achieve a new state-of-theart 96.6 AUC. Lastly, we extend the framework to learn and extract representations from patches to allow localizing defective areas without annotations during training.
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
无监督的异常检测已成为一种流行的方法,可以检测医学图像中的病理,因为它不需要监督或标签进行训练。最常见的是,异常检测模型会生成输入映像的“正常”版本,而Pixel $ l^p $ - 两者的差异用于本地化异常。但是,大多数医学图像中存在的复杂解剖结构的不完善重建通常是由于不完善的重建而发生的。该方法还无法检测到没有与周围组织的强度差异很大的异常。我们建议使用特征映射功能解决此问题,该功能将输入强度图像转换为具有多个通道的空间,在该空间中可以沿着从原始图像提取的不同判别特征地图检测到异常。然后,我们使用结构相似性损失在该空间中训练自动编码器模型,该模型不仅考虑强度差异,而且考虑对比度和结构。我们的方法大大提高了大脑MRI的两个医学数据集的性能。代码和实验可从https://github.com/felime/feature-autoencoder获得
translated by 谷歌翻译
异常检测是要识别在某些方面与训练观察结果不同的样本。这些不符合正常数据分布的样本称为异常值或异常。在现实世界的异常检测问题中,离群值不存在,定义不当或实例非常有限。最近的最新基于深度学习的异常检测方法遭受了高计算成本,复杂性,不稳定的培训程序和非平凡的实施,因此它们很难在现实世界应用中部署。为了解决这个问题,我们利用一个简单的学习程序来训练轻量级的卷积神经网络,在异常检测中达到最先进的表现。在本文中,我们建议将异常检测作为监督回归问题。我们使用连续值的两个可分离分布标记正常和异常数据。为了补偿训练时间中异常样品的不可用,我们利用直接图像增强技术来创建一组不同的样本作为异常。增强集的分布相似,但与正常数据略有偏差,而实际异常将具有进一步的分布。因此,对这些增强样品的训练回归器将导致标签的分布更加可分离,以适应正常和真实的异常数据点。图像和视频数据集的异常检测实验显示了所提出的方法比最新方法的优越性。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
人脑解剖图像的专家解释是神经放射学的中心部分。已经提出了几种基于机器学习的技术来协助分析过程。但是,通常需要对ML模型进行培训以执行特定的任务,例如脑肿瘤分割或分类。相应的培训数据不仅需要费力的手动注释,而且人脑MRI中可以存在多种异常 - 甚至同时发生,这使得所有可能的异常情况都非常具有挑战性。因此,可能的解决方案是一种无监督的异常检测(UAD)系统,可以从健康受试者的未标记数据集中学习数据分布,然后应用以检测​​分布样本。然后,这种技术可用于检测异常 - 病变或异常,例如脑肿瘤,而无需明确训练该特定病理的模型。过去已经为此任务提出了几种基于变异的自动编码器(VAE)技术。即使它们在人为模拟的异常情况下表现良好,但其中许多在检测临床数据中的异常情况下表现较差。这项研究提出了“上下文编码” VAE(CEVAE)模型的紧凑版本,并结合了预处理和后处理步骤,创建了UAD管道(Strega)(Strega),该步骤对临床数据更强大,并显示其在检测到其检测方面的适用性脑MRI中的肿瘤等异常。 The proposed pipeline achieved a Dice score of 0.642$\pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$\pm$0.112 while detecting artificially induced anomalies, while the best performing baseline achieved 0.522$\pm$0.135 and 0.783$\ PM分别为0.111美元。
translated by 谷歌翻译
大量标记的医学图像对于准确检测异常是必不可少的,但是手动注释是劳动密集型且耗时的。自我监督学习(SSL)是一种培训方法,可以在没有手动注释的情况下学习特定于数据的功能。在医学图像异常检测中已采用了几种基于SSL的模型。这些SSL方法有效地学习了几个特定特定图像的表示形式,例如自然和工业产品图像。但是,由于需要医学专业知识,典型的基于SSL的模型在医疗图像异常检测中效率低下。我们提出了一个基于SSL的模型,该模型可实现基于解剖结构的无监督异常检测(UAD)。该模型采用解剖学意识粘贴(Anatpaste)增强工具。 Anatpaste采用基于阈值的肺部分割借口任务来在正常的胸部X光片上创建异常,用于模型预处理。这些异常类似于实际异常,并帮助模型识别它们。我们在三个OpenSource胸部X光片数据集上评估了我们的模型。我们的模型在曲线(AUC)下展示了92.1%,78.7%和81.9%的模型,在现有UAD模型中最高。这是第一个使用解剖信息作为借口任务的SSL模型。 Anatpaste可以应用于各种深度学习模型和下游任务。它可以通过修复适当的细分来用于其他方式。我们的代码可在以下网址公开获取:https://github.com/jun-sato/anatpaste。
translated by 谷歌翻译
深度卷积自动编码器为学习非线性维度降低的方式提供了有效的工具。最近,它们已用于视觉域中的异常检测任务。通过使用无异常示例为重建误差进行优化,普遍的信念是,训练有素的网络在测试阶段很难重建异常部分。这通常是通过控制网络的容量来通过减小瓶颈层的大小或在其激活上执行稀疏性约束来完成的。但是,这些技术都没有明确惩罚重建异常信号,通常会导致检测不佳。我们通过调整自我监督的学习制度来解决这个问题,该系统允许在训练过程中使用判别性信息,同时正规化模型通过修改后的重建错误将重点放在数据歧管上,从而导致准确的检测。与相关方法不同,训练和预测过程中提出的方法的推断非常有效地处理整个输入图像。我们对MVTEC异常检测数据集的实验表明该方法的高识别和定位性能。特别是,在纹理 - 材料上,我们的方法始终以大幅度的边距优于最近的一系列最近的异常检测方法。
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
我们介绍了几个新的数据集即想象的A / O和Imagenet-R以及合成环境和测试套件,我们称为CAOS。 Imagenet-A / O允许研究人员专注于想象成剩余的盲点。由于追踪稳健的表示,以特殊创建了ImageNet-R,因为表示不再简单地自然,而是包括艺术和其他演绎。 Caos Suite由Carla Simulator构建,允许包含异常物体,可以创建可重复的合成环境和用于测试稳健性的场景。所有数据集都是为测试鲁棒性和衡量鲁棒性的衡量进展而创建的。数据集已用于各种其他作品中,以衡量其具有鲁棒性的自身进步,并允许切向进展,这些进展不会完全关注自然准确性。鉴于这些数据集,我们创建了几种旨在推进鲁棒性研究的新方法。我们以最大Logit的形式和典型程度的形式构建简单的基线,并以深度的形式创建新的数据增强方法,从而提高上述基准。最大Logit考虑Logit值而不是SoftMax操作后的值,而微小的变化会产生明显的改进。典型程分将输出分布与类的后部分布进行比较。我们表明,除了分段任务之外,这将提高对基线的性能。猜测可能在像素级别,像素的语义信息比类级信息的语义信息不太有意义。最后,新的Deepaulment的新增强技术利用神经网络在彻底不同于先前使用的传统几何和相机的转换的图像上创建增强。
translated by 谷歌翻译
在工业应用中,无监督的异常检测是一项艰巨的任务,因为收集足够的异常样品是不切实际的。在本文中,通过共同探索锻造异常样品的有效生成方法和正常样品特征作为分割异常检测的指导信息,提出了一种新颖的自我监督指导性分割框架(SGSF)。具体而言,为确保生成的锻造异常样品有利于模型训练,提出了显着性增强模块(SAM)。 Sam引入了显着图来产生显着性Perlin噪声图,并制定了一种自适应分割策略,以在显着区域产生不规则的掩模。然后,将口罩用于生成伪造的异常样品作为训练的负样本。不幸的是,锻造和真实异常样品之间的分布差距使得基于锻造样品训练的模型难以有效定位真实异常。为此,提出了自我监督的指导网络(SGN)。它利用自我监督的模块提取无噪声的功能,并包含正常的语义信息作为分割模块的先验知识。分割模块具有正常模式段的知识,这些片段与指导特征不同。为了评估SGSF对异常检测的有效性,在三个异常检测数据集上进行了广泛的实验。实验结果表明,SGSF达到了最新的异常检测结果。
translated by 谷歌翻译
无监督的异常检测(UAD)只需要正常(健康)训练图像是实现医学图像分析(MIA)应用的重要工具,例如疾病筛查,因为通常难以收集和注释异常(或疾病)MIA中的图像。然而,严重依赖于正常图像可能导致模型训练过度填写正常类。自我监督的预训练是对这个问题的有效解决方案。遗憾的是,从计算机视觉调整的当前自我监督方法是MIA应用的次优,因为它们不探索设计借口任务或培训过程的MIA域知识。在本文中,我们提出了一种为MIA应用设计的UAD的新的自我监督的预训练方法,通过对比学习(MSACL)命名为多级强大增强。 MSACL基于新颖的优化,以对比正常和多种合成的异常图像,每个类在欧几里德距离和余弦相似度方面强制形成紧密和密集的聚类,其中通过模拟变化数量的病变形成异常图像在正常图像中的不同尺寸和外观。在实验中,我们表明,我们的MSACL预培训使用结肠镜检查,眼底筛选和Covid-19胸部X射线数据集来提高SOTA UAD方法的准确性。
translated by 谷歌翻译
Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study.
translated by 谷歌翻译
歧视性无监督的表面异常检测的最新面积取决于外部数据集用于合成异常训练图像的外部数据集。这种方法很容易出现近乎分布异常的失败,因为由于它们与无异常区域的相似性,因此很难现实地合成这些异常。我们提出了一个基于量化的特征空间表示的架构,该架构避免了图像级异常合成要求。在没有对异常的视觉特性做出任何假设的情况下,DSR通过对学到的量化特征空间进行采样,从而在特征级别生成异常,从而允许受控的近乎分布异常。 DSR在KSDD2和MVTEC异常检测数据集上实现了最新结果。关于具有挑战性的现实世界KSDD2数据集的实验表明,DSR明显优于其他无监督的表面异常检测方法,在异常检测中提高了10%的AP,并在异常定位中提高了35%的AP。
translated by 谷歌翻译
与诊断放射学相关的患者护理质量与医师工作量成正比。分割是诊断和治疗程序的基本限制前体。机器学习的进步(ML)旨在提高诊断效率,以用广义算法替代单个应用程序。在无监督的异常检测(UAD)中,基于卷积神经网络(CNN)自动编码器(AES)和变异自动编码器(VAE)被视为基于重建的异常分段的事实方法。在医学图像中寻找异常区域是使用异常分割的主要应用之一。 CNN中受限制的接收场限制了CNN对全局上下文进行建模,因此,如果异常区域涵盖了图像的一部分,则基于CNN的AES无法带来对图像的语义理解。另一方面,视觉变压器(VIT)已成为CNN的竞争替代品。它依赖于能够将图像斑块相互关联的自我发挥机制。为了重建一个连贯和更现实的图像,在这项工作中,我们研究了变形金刚在为基于重建的UAD任务构建AES的功能中。我们专注于用于大脑磁共振成像(MRI)的异常分割,并呈现五个基于变压器的模型,同时可以使分割性能可比或与最新模型(SOTA)模型相当。源代码可在github https://github.com/ahmedgh970/transformers_unsupervise_anomaly_segentation.git上获得
translated by 谷歌翻译
最先进的语义或实例分割深度神经网络(DNN)通常在封闭的语义类上培训。因此,它们的装备不适用于处理以前的未持续的对象。然而,检测和定位这些物体对于安全关键应用至关重要,例如对自动驾驶的感知,特别是如果它们出现在前方的道路上。虽然某些方法已经解决了异常或分发的对象分割的任务,但由于缺乏固体基准,在很大程度上存在进展仍然缓慢;现有数据集由合成数据组成,或遭受标签不一致。在本文中,我们通过介绍“SegmentMeifyOUCAN”基准来弥合这个差距。我们的基准解决了两个任务:异常对象分割,这将考虑任何以前的未持续的对象类别;和道路障碍分割,它侧重于道路上的任何物体,可能是已知的或未知的。我们将两个相应的数据集与执行深入方法分析的测试套件一起提供,考虑到已建立的像素 - 明智的性能度量和最近的组件 - 明智的,这对对象尺寸不敏感。我们凭经验评估了多种最先进的基线方法,包括使用我们的测试套件在我们的数据集和公共数据上专门为异常/障碍分割而设计的多种型号。异常和障碍分割结果表明,我们的数据集有助于数据景观的多样性和难度。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译