The capture and animation of human hair are two of the major challenges in the creation of realistic avatars for the virtual reality. Both problems are highly challenging, because hair has complex geometry and appearance, as well as exhibits challenging motion. In this paper, we present a two-stage approach that models hair independently from the head to address these challenges in a data-driven manner. The first stage, state compression, learns a low-dimensional latent space of 3D hair states containing motion and appearance, via a novel autoencoder-as-a-tracker strategy. To better disentangle the hair and head in appearance learning, we employ multi-view hair segmentation masks in combination with a differentiable volumetric renderer. The second stage learns a novel hair dynamics model that performs temporal hair transfer based on the discovered latent codes. To enforce higher stability while driving our dynamics model, we employ the 3D point-cloud autoencoder from the compression stage for de-noising of the hair state. Our model outperforms the state of the art in novel view synthesis and is capable of creating novel hair animations without having to rely on hair observations as a driving signal.
translated by 谷歌翻译
捕获和渲染寿命状的头发由于其细微的几何结构,复杂的物理相互作用及其非琐碎的视觉外观而特别具有挑战性。灰色是可信的头像的关键部件。在本文中,我们解决了上述问题:1)我们使用一种新的体积发型,这是成千上万的基元提出的。通过构建神经渲染的最新进步,每个原始可以有效地渲染。 2)具有可靠的控制信号,我们呈现了一种在股线水平上跟踪头发的新方法。为了保持计算努力,我们使用引导毛和经典技术将那些扩展到致密的头发罩中。 3)为了更好地强制执行我们模型的时间一致性和泛化能力,我们使用体积射线前导,进一步优化了我们的表示光流的3D场景流。我们的方法不仅可以创建录制的多视图序列的真实渲染,还可以通过提供新的控制信号来为新的头发配置创建渲染。我们将我们的方法与现有的方法进行比较,在视点合成和可驱动动画和实现最先进的结果。
translated by 谷歌翻译
我们介绍了一个自由视的渲染方法 - Humannerf - 这对人类进行了复杂的身体运动的给定单曲视频工作,例如,来自YouTube的视频。我们的方法可以在任何帧中暂停视频,并从任意新相机视点呈现对象,甚至是该特定帧和身体姿势的完整360度摄像机路径。这项任务特别具有挑战性,因为它需要合成身体的光电型细节,如从输入视频中可能不存在的各种相机角度所见,以及合成布折叠和面部外观的细细节。我们的方法优化了在规范T型姿势中的人的体积表示,同时通过运动场,该运动场通过向后的警报将估计的规范表示映射到视频的每个帧。运动场分解成骨骼刚性和非刚性运动,由深网络产生。我们对现有工作显示出显着的性能改进,以及从移动人类的单眼视频的令人尖锐的观点渲染的阐释示例,以挑战不受控制的捕获场景。
translated by 谷歌翻译
隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态的人头中的准确细节,例如精细的面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来解开几何形状和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以明确和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及时间相关的残差,以建模时间和视图变化。我们将我们的方法与几个重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
我们人类正在进入虚拟时代,确实想将动物带到虚拟世界中。然而,计算机生成的(CGI)毛茸茸的动物受到乏味的离线渲染的限制,更不用说交互式运动控制了。在本文中,我们提出了Artemis,这是一种新型的神经建模和渲染管道,用于生成具有外观和运动合成的清晰神经宠物。我们的Artemis可以实现互动运动控制,实时动画和毛茸茸的动物的照片真实渲染。我们的Artemis的核心是神经生成的(NGI)动物引擎,该动物发动机采用了有效的基于OCTREE的动物动画和毛皮渲染的代表。然后,该动画等同于基于显式骨骼翘曲的体素级变形。我们进一步使用快速的OCTREE索引和有效的体积渲染方案来生成外观和密度特征地图。最后,我们提出了一个新颖的阴影网络,以在外观和密度特征图中生成外观和不透明度的高保真细节。对于Artemis中的运动控制模块,我们将最新动物运动捕获方法与最近的神经特征控制方案相结合。我们引入了一种有效的优化方案,以重建由多视图RGB和Vicon相机阵列捕获的真实动物的骨骼运动。我们将所有捕获的运动馈送到神经角色控制方案中,以生成具有运动样式的抽象控制信号。我们将Artemis进一步整合到支持VR耳机的现有引擎中,提供了前所未有的沉浸式体验,用户可以与各种具有生动动作和光真实外观的虚拟动物进行紧密互动。我们可以通过https://haiminluo.github.io/publication/artemis/提供我们的Artemis模型和动态毛茸茸的动物数据集。
translated by 谷歌翻译
我们提出了神经演员(NA),一种用于从任意观点和任意可控姿势的高质量合成人类的新方法。我们的方法是基于最近的神经场景表示和渲染工作,从而从仅从2D图像中学习几何形状和外观的表示。虽然现有的作品令人兴奋地呈现静态场景和动态场景的播放,具有神经隐含方法的照片 - 现实重建和人类的渲染,特别是在用户控制的新颖姿势下,仍然很困难。为了解决这个问题,我们利用一个粗体模型作为将周围的3D空间的代理放入一个规范姿势。神经辐射场从多视图视频输入中了解在规范空间中的姿势依赖几何变形和姿势和视图相关的外观效果。为了综合高保真动态几何和外观的新颖视图,我们利用身体模型上定义的2D纹理地图作为预测残余变形和动态外观的潜变量。实验表明,我们的方法能够比播放的最先进,以及新的姿势合成来实现更好的质量,并且甚至可以概括到新的姿势与训练姿势不同的姿势。此外,我们的方法还支持对合成结果的体形控制。
translated by 谷歌翻译
逼真的触觉需要高保真的身体建模和忠实的驾驶才能使动态合成的外观与现实无法区分。在这项工作中,我们提出了一个端到端框架,该框架解决了建模和推动真实人的全身化身方面的两个核心挑战。一个挑战是驾驶头像,同时忠实地遵守细节和动态,而这些细节和动态无法被全球低维参数化(例如身体姿势)所捕捉。我们的方法支持驾驶穿着皱纹和运动的衣服化身,而真正的驾驶表演者展出了训练语料库。与现有的全局状态表示或非参数屏幕空间方法不同,我们介绍了Texel对准功能 - 一种本地化表示,可以利用基于骨架的参数模型的结构先验和同时观察到的稀疏图像信号。另一个挑战是建模临时连贯的衣服头像,通常需要精确的表面跟踪。为了避免这种情况,我们通过将体积原语的混合物扩展到清晰的物体,提出了一种新型的体积化头像表示。通过明确合并表达,我们的方法自然而然地概括了看不见的姿势。我们还介绍了局部视点条件,从而导致了依赖视图的外观的概括。拟议的体积表示不需要高质量的网格跟踪作为先决条件,并且与基于网格的对应物相比,具有显着的质量改进。在我们的实验中,我们仔细研究了我们的设计选择,并证明了方法的功效,超过了最新方法在挑战驾驶方案方面的最新方法。
translated by 谷歌翻译
对于场景重建和新型视图综合的数量表示形式的普及最近,人们的普及使重点放在以高视觉质量和实时为实时的体积内容动画上。尽管基于学习功能的隐性变形方法可以产生令人印象深刻的结果,但它们是艺术家和内容创建者的“黑匣子”,但它们需要大量的培训数据才能有意义地概括,并且在培训数据之外不会产生现实的外推。在这项工作中,我们通过引入实时的音量变形方法来解决这些问题,该方法是实时的,易于使用现成的软件编辑,并且可以令人信服地推断出来。为了证明我们方法的多功能性,我们将其应用于两种情况:基于物理的对象变形和触发性,其中使用Blendshapes控制着头像。我们还进行了彻底的实验,表明我们的方法与两种体积方法相比,结合了基于网格变形的隐式变形和方法。
translated by 谷歌翻译
Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.
translated by 谷歌翻译
我们呈现虚拟弹性物体(VEOS):虚拟物体,不仅看起来像他们的真实同行,而且也表现得像他们一样,即使在进行新颖的互动时也是如此。实现这一挑战:不仅必须捕获对象,包括对它们上的物理力量,然后忠实地重建和呈现,而且还发现和模拟了合理的材料参数。要创建VEOS,我们构建了一个多视图捕获系统,捕获压缩空气流的影响下的物体。建立近期型号动态神经辐射区域的进步,我们重建了物体和相应的变形字段。我们建议使用可差异的基于粒子的模拟器来使用这些变形字段来查找代表性的材料参数,这使我们能够运行新的模拟。为了渲染模拟对象,我们设计了一种用神经辐射场将模拟结果集成的方法。结果方法适用于各种场景:它可以处理由非均匀材料组成的物体,具有非常不同的形状,它可以模拟与其他虚拟对象的交互。我们在各种力字段下使用12个对象的新收集的数据集介绍了我们的结果,这将与社区共享。
translated by 谷歌翻译
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene. State-of-the-art methods based on temporally varying Neural Radiance Fields (aka dynamic NeRFs) have shown impressive results on this task. However, for long videos with complex object motions and uncontrolled camera trajectories, these methods can produce blurry or inaccurate renderings, hampering their use in real-world applications. Instead of encoding the entire dynamic scene within the weights of an MLP, we present a new approach that addresses these limitations by adopting a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views in a scene-motion-aware manner. Our system retains the advantages of prior methods in its ability to model complex scenes and view-dependent effects, but also enables synthesizing photo-realistic novel views from long videos featuring complex scene dynamics with unconstrained camera trajectories. We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets, and also apply our approach to in-the-wild videos with challenging camera and object motion, where prior methods fail to produce high-quality renderings. Our project webpage is at dynibar.github.io.
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
Figure 1. Given a monocular image sequence, NR-NeRF reconstructs a single canonical neural radiance field to represent geometry and appearance, and a per-time-step deformation field. We can render the scene into a novel spatio-temporal camera trajectory that significantly differs from the input trajectory. NR-NeRF also learns rigidity scores and correspondences without direct supervision on either. We can use the rigidity scores to remove the foreground, we can supersample along the time dimension, and we can exaggerate or dampen motion.
translated by 谷歌翻译
我们介绍了神经点光场,它用稀疏点云上的轻场隐含地表示场景。结合可分辨率的体积渲染与学习的隐式密度表示使得可以合成用于小型场景的新颖视图的照片现实图像。作为神经体积渲染方法需要潜在的功能场景表示的浓密采样,在沿着射线穿过体积的数百个样本,它们从根本上限制在具有投影到数百个训练视图的相同对象的小场景。向神经隐式光线推广稀疏点云允许我们有效地表示每个光线的单个隐式采样操作。这些点光场作为光线方向和局部点特征邻域的函数,允许我们在没有密集的物体覆盖和视差的情况下插入光场条件训练图像。我们评估大型驾驶场景的新型视图综合的提出方法,在那里我们综合了现实的看法,即现有的隐式方法未能代表。我们验证了神经点光场可以通过显式建模场景来实现沿着先前轨迹的视频来预测沿着看不见的轨迹的视频。
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译
神经量渲染能够在自由观看中的人类表演者的照片真实效果图,这是沉浸式VR/AR应用中的关键任务。但是,这种做法受到渲染过程中高计算成本的严重限制。为了解决这个问题,我们提出了紫外线量,这是一种新方法,可以实时呈现人类表演者的可编辑免费视频视频。它将高频(即非平滑)的外观与3D体积分开,并将其编码为2D神经纹理堆栈(NTS)。光滑的紫外线量允许更小且较浅的神经网络获得3D的密度和纹理坐标,同时在2D NT中捕获详细的外观。为了编辑性,参数化的人类模型与平滑纹理坐标之间的映射使我们可以更好地对新型姿势和形状进行更好的概括。此外,NTS的使用启用了有趣的应用程序,例如重新启动。关于CMU Panoptic,ZJU MOCAP和H36M数据集的广泛实验表明,我们的模型平均可以在30fps中呈现960 * 540张图像,并具有可比的照片现实主义与先进方法。该项目和补充材料可从https://github.com/fanegg/uv-volumes获得。
translated by 谷歌翻译
我们提出了神经链,这是一个新颖的学习框架,用于对多视图图像输入进行准确的头发几何形状和外观进行建模。从任何观点都具有高保真视图依赖性效果,可以实时渲染学习的头发模型。我们的模型可实现直观的形状和风格控制,与体积同行不同。为了实现这些特性,我们提出了一种基于神经头皮纹理的新型头发表示,该神经头皮纹理编码每个Texel位置的单个链的几何形状和外观。此外,我们基于学习的头发链的栅格化引入了一个新型的神经渲染框架。我们的神经渲染是链的和抗氧化的,使渲染视图一致且逼真。将外观与多视图几何事先结合在一起,我们首次启用了外观的联合学习和从多视图设置的显式头发几何形状。我们证明了我们的方法在各种发型的忠诚度和效率方面的功效。
translated by 谷歌翻译
Figure 1: Given a monocular portrait video sequence of a person, we reconstruct a dynamic neural radiance field representing a 4D facial avatar, which allows us to synthesize novel head poses as well as changes in facial expressions.
translated by 谷歌翻译