我们呈现虚拟弹性物体(VEOS):虚拟物体,不仅看起来像他们的真实同行,而且也表现得像他们一样,即使在进行新颖的互动时也是如此。实现这一挑战:不仅必须捕获对象,包括对它们上的物理力量,然后忠实地重建和呈现,而且还发现和模拟了合理的材料参数。要创建VEOS,我们构建了一个多视图捕获系统,捕获压缩空气流的影响下的物体。建立近期型号动态神经辐射区域的进步,我们重建了物体和相应的变形字段。我们建议使用可差异的基于粒子的模拟器来使用这些变形字段来查找代表性的材料参数,这使我们能够运行新的模拟。为了渲染模拟对象,我们设计了一种用神经辐射场将模拟结果集成的方法。结果方法适用于各种场景:它可以处理由非均匀材料组成的物体,具有非常不同的形状,它可以模拟与其他虚拟对象的交互。我们在各种力字段下使用12个对象的新收集的数据集介绍了我们的结果,这将与社区共享。
translated by 谷歌翻译
Figure 1. Given a monocular image sequence, NR-NeRF reconstructs a single canonical neural radiance field to represent geometry and appearance, and a per-time-step deformation field. We can render the scene into a novel spatio-temporal camera trajectory that significantly differs from the input trajectory. NR-NeRF also learns rigidity scores and correspondences without direct supervision on either. We can use the rigidity scores to remove the foreground, we can supersample along the time dimension, and we can exaggerate or dampen motion.
translated by 谷歌翻译
综合照片 - 现实图像和视频是计算机图形的核心,并且是几十年的研究焦点。传统上,使用渲染算法(如光栅化或射线跟踪)生成场景的合成图像,其将几何形状和材料属性的表示为输入。统称,这些输入定义了实际场景和呈现的内容,并且被称为场景表示(其中场景由一个或多个对象组成)。示例场景表示是具有附带纹理的三角形网格(例如,由艺术家创建),点云(例如,来自深度传感器),体积网格(例如,来自CT扫描)或隐式曲面函数(例如,截短的符号距离)字段)。使用可分辨率渲染损耗的观察结果的这种场景表示的重建被称为逆图形或反向渲染。神经渲染密切相关,并将思想与经典计算机图形和机器学习中的思想相结合,以创建用于合成来自真实观察图像的图像的算法。神经渲染是朝向合成照片现实图像和视频内容的目标的跨越。近年来,我们通过数百个出版物显示了这一领域的巨大进展,这些出版物显示了将被动组件注入渲染管道的不同方式。这种最先进的神经渲染进步的报告侧重于将经典渲染原则与学习的3D场景表示结合的方法,通常现在被称为神经场景表示。这些方法的一个关键优势在于它们是通过设计的3D-一致,使诸如新颖的视点合成捕获场景的应用。除了处理静态场景的方法外,我们还涵盖了用于建模非刚性变形对象的神经场景表示...
translated by 谷歌翻译
对于场景重建和新型视图综合的数量表示形式的普及最近,人们的普及使重点放在以高视觉质量和实时为实时的体积内容动画上。尽管基于学习功能的隐性变形方法可以产生令人印象深刻的结果,但它们是艺术家和内容创建者的“黑匣子”,但它们需要大量的培训数据才能有意义地概括,并且在培训数据之外不会产生现实的外推。在这项工作中,我们通过引入实时的音量变形方法来解决这些问题,该方法是实时的,易于使用现成的软件编辑,并且可以令人信服地推断出来。为了证明我们方法的多功能性,我们将其应用于两种情况:基于物理的对象变形和触发性,其中使用Blendshapes控制着头像。我们还进行了彻底的实验,表明我们的方法与两种体积方法相比,结合了基于网格变形的隐式变形和方法。
translated by 谷歌翻译
我们人类正在进入虚拟时代,确实想将动物带到虚拟世界中。然而,计算机生成的(CGI)毛茸茸的动物受到乏味的离线渲染的限制,更不用说交互式运动控制了。在本文中,我们提出了Artemis,这是一种新型的神经建模和渲染管道,用于生成具有外观和运动合成的清晰神经宠物。我们的Artemis可以实现互动运动控制,实时动画和毛茸茸的动物的照片真实渲染。我们的Artemis的核心是神经生成的(NGI)动物引擎,该动物发动机采用了有效的基于OCTREE的动物动画和毛皮渲染的代表。然后,该动画等同于基于显式骨骼翘曲的体素级变形。我们进一步使用快速的OCTREE索引和有效的体积渲染方案来生成外观和密度特征地图。最后,我们提出了一个新颖的阴影网络,以在外观和密度特征图中生成外观和不透明度的高保真细节。对于Artemis中的运动控制模块,我们将最新动物运动捕获方法与最近的神经特征控制方案相结合。我们引入了一种有效的优化方案,以重建由多视图RGB和Vicon相机阵列捕获的真实动物的骨骼运动。我们将所有捕获的运动馈送到神经角色控制方案中,以生成具有运动样式的抽象控制信号。我们将Artemis进一步整合到支持VR耳机的现有引擎中,提供了前所未有的沉浸式体验,用户可以与各种具有生动动作和光真实外观的虚拟动物进行紧密互动。我们可以通过https://haiminluo.github.io/publication/artemis/提供我们的Artemis模型和动态毛茸茸的动物数据集。
translated by 谷歌翻译
Humans constantly interact with objects in daily life tasks. Capturing such processes and subsequently conducting visual inferences from a fixed viewpoint suffers from occlusions, shape and texture ambiguities, motions, etc. To mitigate the problem, it is essential to build a training dataset that captures free-viewpoint interactions. We construct a dense multi-view dome to acquire a complex human object interaction dataset, named HODome, that consists of $\sim$75M frames on 10 subjects interacting with 23 objects. To process the HODome dataset, we develop NeuralDome, a layer-wise neural processing pipeline tailored for multi-view video inputs to conduct accurate tracking, geometry reconstruction and free-view rendering, for both human subjects and objects. Extensive experiments on the HODome dataset demonstrate the effectiveness of NeuralDome on a variety of inference, modeling, and rendering tasks. Both the dataset and the NeuralDome tools will be disseminated to the community for further development.
translated by 谷歌翻译
Point of View & TimeFigure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances synthesised by the proposed model.
translated by 谷歌翻译
3D reconstruction and novel view synthesis of dynamic scenes from collections of single views recently gained increased attention. Existing work shows impressive results for synthetic setups and forward-facing real-world data, but is severely limited in the training speed and angular range for generating novel views. This paper addresses these limitations and proposes a new method for full 360{\deg} novel view synthesis of non-rigidly deforming scenes. At the core of our method are: 1) An efficient deformation module that decouples the processing of spatial and temporal information for acceleration at training and inference time; and 2) A static module representing the canonical scene as a fast hash-encoded neural radiance field. We evaluate the proposed approach on the established synthetic D-NeRF benchmark, that enables efficient reconstruction from a single monocular view per time-frame randomly sampled from a full hemisphere. We refer to this form of inputs as monocularized data. To prove its practicality for real-world scenarios, we recorded twelve challenging sequences with human actors by sampling single frames from a synchronized multi-view rig. In both cases, our method is trained significantly faster than previous methods (minutes instead of days) while achieving higher visual accuracy for generated novel views. Our source code and data is available at our project page https://graphics.tu-bs.de/publications/kappel2022fast.
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
最近,我们看到了照片真实的人类建模和渲染的神经进展取得的巨大进展。但是,将它们集成到现有的下游应用程序中的现有网络管道中仍然具有挑战性。在本文中,我们提出了一种全面的神经方法,用于从密集的多视频视频中对人类表演进行高质量重建,压缩和渲染。我们的核心直觉是用一系列高效的神经技术桥接传统的动画网格工作流程。我们首先引入一个神经表面重建器,以在几分钟内进行高质量的表面产生。它与多分辨率哈希编码的截短签名距离场(TSDF)的隐式体积渲染相结合。我们进一步提出了一个混合神经跟踪器来生成动画网格,该网格将明确的非刚性跟踪与自我监督框架中的隐式动态变形结合在一起。前者将粗糙的翘曲返回到规范空间中,而后者隐含的一个隐含物进一步预测了使用4D哈希编码的位移,如我们的重建器中。然后,我们使用获得的动画网格讨论渲染方案,从动态纹理到各种带宽设置下的Lumigraph渲染。为了在质量和带宽之间取得复杂的平衡,我们通过首先渲染6个虚拟视图来涵盖表演者,然后进行闭塞感知的神经纹理融合,提出一个分层解决方案。我们证明了我们方法在各种平台上的各种基于网格的应用程序和照片真实的自由观看体验中的功效,即,通过移动AR插入虚拟人类的表演,或通过移动AR插入真实环境,或带有VR头戴式的人才表演。
translated by 谷歌翻译
where the highest resolution is required, using facial performance capture as a case in point.
translated by 谷歌翻译
由于基础物理学的复杂性以及捕获中的复杂遮挡和照明,从稀疏多视频RGB视频中对流体的高保真重建仍然是一个巨大的挑战。现有的解决方案要么假设障碍和照明知识,要么仅专注于没有障碍物或复杂照明的简单流体场景,因此不适合具有未知照明或任意障碍的现实场景。我们提出了第一种通过从稀疏视频的端到端优化中利用管理物理(即,navier -stokes方程)来重建动态流体的第一种方法,而无需采取照明条件,几何信息或边界条件作为输入。我们使用神经网络作为流体的密度和速度解决方案函数以及静态对象的辐射场函数提供连续的时空场景表示。通过将静态和动态含量分开的混合体系结构,与静态障碍物的流体相互作用首次重建,而没有其他几何输入或人类标记。通过用物理知识的深度学习来增强随时间变化的神经辐射场,我们的方法受益于对图像和物理先验的监督。为了从稀疏视图中实现强大的优化,我们引入了逐层增长策略,以逐步提高网络容量。使用具有新的正则化项的逐步增长的模型,我们设法在不拟合的情况下解除了辐射场中的密度彩色歧义。在避免了次优速度之前,将预验证的密度到速度流体模型借用了,该数据低估了涡度,但可以微不足道地满足物理方程。我们的方法在一组代表性的合成和真实流动捕获方面表现出具有放松的约束和强大的灵活性的高质量结果。
translated by 谷歌翻译
Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.
translated by 谷歌翻译
我们向渲染和时间(4D)重建人类的渲染和时间(4D)重建的神经辐射场,通过稀疏的摄像机捕获或甚至来自单眼视频。我们的方法将思想与神经场景表示,新颖的综合合成和隐式统计几何人称的人类表示相结合,耦合使用新颖的损失功能。在先前使用符号距离功能表示的结构化隐式人体模型,而不是使用统一的占用率来学习具有统一占用的光域字段。这使我们能够从稀疏视图中稳健地融合信息,并概括超出在训练中观察到的姿势或视图。此外,我们应用几何限制以共同学习观察到的主题的结构 - 包括身体和衣服 - 并将辐射场正规化为几何合理的解决方案。在多个数据集上的广泛实验证明了我们方法的稳健性和准确性,其概括能力显着超出了一系列的姿势和视图,以及超出所观察到的形状的统计外推。
translated by 谷歌翻译
The capture and animation of human hair are two of the major challenges in the creation of realistic avatars for the virtual reality. Both problems are highly challenging, because hair has complex geometry and appearance, as well as exhibits challenging motion. In this paper, we present a two-stage approach that models hair independently from the head to address these challenges in a data-driven manner. The first stage, state compression, learns a low-dimensional latent space of 3D hair states containing motion and appearance, via a novel autoencoder-as-a-tracker strategy. To better disentangle the hair and head in appearance learning, we employ multi-view hair segmentation masks in combination with a differentiable volumetric renderer. The second stage learns a novel hair dynamics model that performs temporal hair transfer based on the discovered latent codes. To enforce higher stability while driving our dynamics model, we employ the 3D point-cloud autoencoder from the compression stage for de-noising of the hair state. Our model outperforms the state of the art in novel view synthesis and is capable of creating novel hair animations without having to rely on hair observations as a driving signal.
translated by 谷歌翻译
捕获一般的变形场景对于许多计算机图形和视觉应用至关重要,当只有单眼RGB视频可用时,这尤其具有挑战性。竞争方法假设密集的点轨道,3D模板,大规模训练数据集或仅捕获小规模的变形。与这些相反,我们的方法UB4D在挑战性的情况下超过了先前的艺术状态,而没有做出这些假设。我们的技术包括两个新的,在非刚性3D重建的背景下,组件,即1)1)针对非刚性场景的基于坐标的和隐性的神经表示,这使动态场景无偏重建,2)新颖的新颖。动态场景流量损失,可以重建较大的变形。我们的新数据集(将公开可用)的结果表明,就表面重建精度和对大变形的鲁棒性而言,对最新技术的明显改善。访问项目页面https://4dqv.mpi-inf.mpg.de/ub4d/。
translated by 谷歌翻译
我们介绍了一个自由视的渲染方法 - Humannerf - 这对人类进行了复杂的身体运动的给定单曲视频工作,例如,来自YouTube的视频。我们的方法可以在任何帧中暂停视频,并从任意新相机视点呈现对象,甚至是该特定帧和身体姿势的完整360度摄像机路径。这项任务特别具有挑战性,因为它需要合成身体的光电型细节,如从输入视频中可能不存在的各种相机角度所见,以及合成布折叠和面部外观的细细节。我们的方法优化了在规范T型姿势中的人的体积表示,同时通过运动场,该运动场通过向后的警报将估计的规范表示映射到视频的每个帧。运动场分解成骨骼刚性和非刚性运动,由深网络产生。我们对现有工作显示出显着的性能改进,以及从移动人类的单眼视频的令人尖锐的观点渲染的阐释示例,以挑战不受控制的捕获场景。
translated by 谷歌翻译
隐式辐射功能作为重建和渲染3D场景的照片真实观点的强大场景表示形式出现。但是,这些表示的编辑性差。另一方面,诸如多边形网格之类的显式表示允许易于编辑,但不适合重建动态的人头中的准确细节,例如精细的面部特征,头发,牙齿,牙齿和眼睛。在这项工作中,我们提出了神经参数化(NEP),这是一种混合表示,提供了隐式和显式方法的优势。 NEP能够进行照片真实的渲染,同时允许对场景的几何形状和外观进行细粒度编辑。我们首先通过将3D几何形状参数化为2D纹理空间来解开几何形状和外观。我们通过引入显式线性变形层来启用几何编辑性。变形由一组稀疏的密钥点控制,可以明确和直观地移位以编辑几何形状。对于外观,我们开发了一个混合2D纹理,该纹理由明确的纹理图组成,以易于编辑和隐式视图以及时间相关的残差,以建模时间和视图变化。我们将我们的方法与几个重建和编辑基线进行比较。结果表明,NEP在保持高编辑性的同时达到了几乎相同的渲染精度。
translated by 谷歌翻译
基于坐标的体积表示有可能从图像中生成光真实的虚拟化身。但是,即使是可能未观察到的新姿势,虚拟化身也需要控制。传统技术(例如LBS)提供了这样的功能;但是,通常需要手工设计的车身模板,3D扫描数据和有限的外观模型。另一方面,神经表示在表示视觉细节方面具有强大的作用,但在变形的动态铰接式参与者方面受到了探索。在本文中,我们提出了TAVA,这是一种基于神经表示形式创建无象光动画体积参与者的方法。我们仅依靠多视图数据和跟踪的骨骼来创建演员的体积模型,该模型可以在给定的新颖姿势的测试时间中进行动画。由于塔瓦不需要身体模板,因此它适用于人类以及其他动物(例如动物)。此外,Tava的设计使其可以恢复准确的密集对应关系,从而使其适合于内容创建和编辑任务。通过广泛的实验,我们证明了所提出的方法可以很好地推广到新颖的姿势以及看不见的观点和展示基本的编辑功能。
translated by 谷歌翻译
机器学习的最近进步已经创造了利用一类基于坐标的神经网络来解决视觉计算问题的兴趣,该基于坐标的神经网络在空间和时间跨空间和时间的场景或对象的物理属性。我们称之为神经领域的这些方法已经看到在3D形状和图像的合成中成功应用,人体的动画,3D重建和姿势估计。然而,由于在短时间内的快速进展,许多论文存在,但尚未出现全面的审查和制定问题。在本报告中,我们通过提供上下文,数学接地和对神经领域的文学进行广泛综述来解决这一限制。本报告涉及两种维度的研究。在第一部分中,我们通过识别神经字段方法的公共组件,包括不同的表示,架构,前向映射和泛化方法来专注于神经字段的技术。在第二部分中,我们专注于神经领域的应用在视觉计算中的不同问题,超越(例如,机器人,音频)。我们的评论显示了历史上和当前化身的视觉计算中已覆盖的主题的广度,展示了神经字段方法所带来的提高的质量,灵活性和能力。最后,我们展示了一个伴随着贡献本综述的生活版本,可以由社区不断更新。
translated by 谷歌翻译