在现代社交媒体和网络时代,现实世界现象的图表表示已成为我的洞察力的令人难以置信的源泉。通常,我们有兴趣了解图形中的实体如何互连。图形神经网络(GNN)已被证明是在各种图形学习任务中的一个非常有用的工具,包括节点分类,链路预测和边缘分类。但是,在大多数任务中,我们使用的图形数据可能是嘈杂的,并且可能包含虚假边缘。也就是说,与底层图形结构有很多不确定性。最近建模不确定性的方法一直使用贝叶斯框架,并将图表视为随机变量,与模型参数相关的概率。已经显示出介绍基于图形的模型,专门用于半监督节点分类,从而显示出更高的分类精度。然而,在最近的工作中提出的图表推理的方法没有考虑图表的结构。在本文中,我们提出了一种新颖的算法,使用邻域随机步行采样(BGCN-NRW)提出了一种名为贝叶斯图卷积网络的新颖算法,它使用了利用图形结构的Markov链蒙特卡罗(MCMC)的图形采样算法,通过使用变分或推理来减少过度拟合与半监督节点分类中的最先进的技术相比,层,并始终竞争的分类结果。
translated by 谷歌翻译
图形神经网络(GNNS)在学习归属图中显示了很大的力量。但是,GNNS从源节点利用遥控器的信息仍然是一个挑战。此外,常规GNN要求将图形属性作为输入,因此它们无法应用于纯图。在论文中,我们提出了名为G-GNNS(GNN的全局信息)的新模型来解决上述限制。首先,通过无监督的预训练获得每个节点的全局结构和属性特征,其保留与节点相关联的全局信息。然后,使用全局功能和原始网络属性,我们提出了一个并行GNN的并行框架来了解这些功能的不同方面。所提出的学习方法可以应用于普通图和归属图。广泛的实验表明,G-GNNS可以在三个标准评估图上优于其他最先进的模型。特别是,我们的方法在学习归属图表时建立了Cora(84.31 \%)和PubMed(80.95 \%)的新基准记录。
translated by 谷歌翻译
基于观察到的图,对在关系结构数据上应用机器学习技术的兴趣增加了。通常,该图并不能完全代表节点之间的真实关系。在这些设置中,构建以观测图为条件的生成模型可以考虑图形不确定性。各种现有技术要么依赖于限制性假设,无法在样品中保留拓扑特性,要么在较大的图表中昂贵。在这项工作中,我们介绍了用于通过图形构建分布的节点复制模型。随机图的采样是通过替换每个节点的邻居的邻居来进行采样的。采样图保留图形结构的关键特征,而无需明确定位它们。此外,该模型的采样非常简单,并与节点线性缩放。我们在三个任务中显示了复制模型的有用性。首先,在节点分类中,基于节点复制的贝叶斯公式在稀疏数据设置中实现了更高的精度。其次,我们采用建议的模型来减轻对抗攻击对图形拓扑的影响。最后,将模型纳入推荐系统设置,改善了对最新方法的回忆。
translated by 谷歌翻译
数据增强已广泛用于图像数据和语言数据,但仍然探索图形神经网络(GNN)。现有方法专注于从全局视角增强图表数据,并大大属于两个类型:具有特征噪声注入的结构操纵和对抗训练。但是,最近的图表数据增强方法忽略了GNNS“消息传递机制的本地信息的重要性。在这项工作中,我们介绍了本地增强,这通过其子图结构增强了节点表示的局部。具体而言,我们将数据增强模拟为特征生成过程。鉴于节点的功能,我们的本地增强方法了解其邻居功能的条件分布,并生成更多邻居功能,以提高下游任务的性能。基于本地增强,我们进一步设计了一个新颖的框架:La-GNN,可以以即插即用的方式应用于任何GNN模型。广泛的实验和分析表明,局部增强一致地对各种基准的各种GNN架构始终如一地产生性能改进。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have attracted increasing attention in recent years and have achieved excellent performance in semi-supervised node classification tasks. The success of most GNNs relies on one fundamental assumption, i.e., the original graph structure data is available. However, recent studies have shown that GNNs are vulnerable to the complex underlying structure of the graph, making it necessary to learn comprehensive and robust graph structures for downstream tasks, rather than relying only on the raw graph structure. In light of this, we seek to learn optimal graph structures for downstream tasks and propose a novel framework for semi-supervised classification. Specifically, based on the structural context information of graph and node representations, we encode the complex interactions in semantics and generate semantic graphs to preserve the global structure. Moreover, we develop a novel multi-measure attention layer to optimize the similarity rather than prescribing it a priori, so that the similarity can be adaptively evaluated by integrating measures. These graphs are fused and optimized together with GNN towards semi-supervised classification objective. Extensive experiments and ablation studies on six real-world datasets clearly demonstrate the effectiveness of our proposed model and the contribution of each component.
translated by 谷歌翻译
图形神经网络已成为从图形结构数据学习的不可缺少的工具之一,并且它们的实用性已在各种各样的任务中显示。近年来,建筑设计的巨大改进,导致各种预测任务的性能更好。通常,这些神经架构在同一层中使用可知的权重矩阵组合节点特征聚合和特征转换。这使得分析从各种跳过的节点特征和神经网络层的富有效力来挑战。由于不同的图形数据集显示在特征和类标签分布中的不同级别和异常级别,因此必须了解哪些特征对于没有任何先前信息的预测任务是重要的。在这项工作中,我们将节点特征聚合步骤和深度与图形神经网络分离,并经验分析了不同的聚合特征在预测性能中发挥作用。我们表明,并非通过聚合步骤生成的所有功能都很有用,并且通常使用这些较少的信息特征可能对GNN模型的性能有害。通过我们的实验,我们表明学习这些功能的某些子集可能会导致各种数据集的性能更好。我们建议使用Softmax作为常规器,并从不同跳距的邻居聚合的功能的“软选择器”;和L2 - GNN层的标准化。结合这些技术,我们呈现了一个简单浅的模型,特征选择图神经网络(FSGNN),并经验展示所提出的模型比九个基准数据集中的最先进的GNN模型实现了可比或甚至更高的准确性节点分类任务,具有显着的改进,可达51.1%。
translated by 谷歌翻译
给定图表具有部分观察到节点特征,我们如何准确估计缺失功能?特征估计是分析现实图表的关键问题,其特征在数据收集过程中通常缺少。准确的估计不仅提供了节点的多种信息,而且还支持需要全面观察节点特征的图形神经网络的推断。但是,设计一种估计高维特征的有效方法是具有挑战性的,因为它要求估算器具有较大的表示能力,从而增加过度拟合的风险。在这项工作中,我们提出了SVGA(结构化变分图自动编码器),这是一种精确的特征估计方法。 SVGA通过结构化变异推断将强固体化应用于潜在变量的分布,该变量推断将变量的先前作为基于图结构的高斯马尔可夫随机字段建模。结果,SVGA结合了概率推理和图形神经网络的优势,在实际数据集中实现了最新性能。
translated by 谷歌翻译
Many interesting problems in machine learning are being revisited with new deep learning tools. For graph-based semisupervised learning, a recent important development is graph convolutional networks (GCNs), which nicely integrate local vertex features and graph topology in the convolutional layers. Although the GCN model compares favorably with other state-of-the-art methods, its mechanisms are not clear and it still requires considerable amount of labeled data for validation and model selection. In this paper, we develop deeper insights into the GCN model and address its fundamental limits. First, we show that the graph convolution of the GCN model is actually a special form of Laplacian smoothing, which is the key reason why GCNs work, but it also brings potential concerns of oversmoothing with many convolutional layers. Second, to overcome the limits of the GCN model with shallow architectures, we propose both co-training and self-training approaches to train GCNs. Our approaches significantly improve GCNs in learning with very few labels, and exempt them from requiring additional labels for validation. Extensive experiments on benchmarks have verified our theory and proposals.
translated by 谷歌翻译
图表神经网络(GNNS)在各种机器学习任务中获得了表示学习的提高。然而,应用邻域聚合的大多数现有GNN通常在图中的图表上执行不良,其中相邻的节点属于不同的类。在本文中,我们示出了在典型的异界图中,边缘可以被引导,以及是否像是处理边缘,也可以使它们过度地影响到GNN模型的性能。此外,由于异常的限制,节点对来自本地邻域之外的类似节点的消息非常有益。这些激励我们开发一个自适应地学习图表的方向性的模型,并利用潜在的长距离相关性节点之间。我们首先将图拉普拉斯概括为基于所提出的特征感知PageRank算法向数字化,该算法同时考虑节点之间的图形方向性和长距离特征相似性。然后,Digraph Laplacian定义了一个图形传播矩阵,导致一个名为{\ em diglaciangcn}的模型。基于此,我们进一步利用节点之间的通勤时间测量的节点接近度,以便在拓扑级别上保留节点的远距离相关性。具有不同级别的10个数据集的广泛实验,同意级别展示了我们在节点分类任务任务中对现有解决方案的有效性。
translated by 谷歌翻译
Neural message passing algorithms for semi-supervised classification on graphs have recently achieved great success. However, for classifying a node these methods only consider nodes that are a few propagation steps away and the size of this utilized neighborhood is hard to extend. In this paper, we use the relationship between graph convolutional networks (GCN) and PageRank to derive an improved propagation scheme based on personalized PageRank. We utilize this propagation procedure to construct a simple model, personalized propagation of neural predictions (PPNP), and its fast approximation, APPNP. Our model's training time is on par or faster and its number of parameters on par or lower than previous models. It leverages a large, adjustable neighborhood for classification and can be easily combined with any neural network. We show that this model outperforms several recently proposed methods for semi-supervised classification in the most thorough study done so far for GCN-like models. Our implementation is available online. 1
translated by 谷歌翻译
为了处理不规则的数据结构,许多数据科学家已经开发了图形卷积神经网络。但是,数据科学家只是主要集中于开发未指导图的深神网络方法。在本文中,我们将介绍用于定向超图的新型神经网络方法。换句话说,我们不仅将开发新型的定向超图神经网络方法,而且还将开发基于新颖的指导性超图的半监督学习方法。这些方法用于解决节点分类任务。实验中使用的两个数据集是Cora和Citeseer数据集。在经典的基于图形的半监督学习方法中,新颖的基于HyperGraph的半监督学习方法,用于解决此节点分类任务的新颖的定向超图神经网络方法,我们认识到新颖的定向HyperGraph神经网络成就最高精度。
translated by 谷歌翻译
在过去几年中,人们对代表性学习的图形神经网络(GNN)的兴趣不大。GNN提供了一个一般有效的框架,可以从图形结构化数据中学习。但是,GNN通常仅使用一个非常有限的邻域的信息来避免过度光滑。希望为模型提供更多信息。在这项工作中,我们将个性化Pagerank(PPR)的极限分布纳入图形注意力网络(GATS)中,以反映较大的邻居信息,而无需引入过度光滑。从直觉上讲,基于个性化Pagerank的消息聚合对应于无限的许多邻里聚合层。我们表明,对于四个广泛使用的基准数据集,我们的模型优于各种基线模型。我们的实施已在线公开。
translated by 谷歌翻译
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the over-smoothing problem.In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: Initial residual and Identity mapping. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi-and fullsupervised tasks. Code is available at https: //github.com/chennnM/GCNII.
translated by 谷歌翻译
图形神经网络(GNN)在学习强大的节点表示中显示了令人信服的性能,这些表现在保留节点属性和图形结构信息的强大节点表示中。然而,许多GNNS在设计有更深的网络结构或手柄大小的图形时遇到有效性和效率的问题。已经提出了几种采样算法来改善和加速GNN的培训,但他们忽略了解GNN性能增益的来源。图表数据中的信息的测量可以帮助采样算法来保持高价值信息,同时消除冗余信息甚至噪声。在本文中,我们提出了一种用于GNN的公制引导(MEGUIDE)子图学习框架。 MEGUIDE采用两种新颖的度量:功能平滑和连接失效距离,以指导子图采样和迷你批次的培训。功能平滑度专为分析节点的特征而才能保留最有价值的信息,而连接失败距离可以测量结构信息以控制子图的大小。我们展示了MEGUIDE在多个数据集上培训各种GNN的有效性和效率。
translated by 谷歌翻译
在过去的二十年中,我们目睹了以图形或网络形式构建的有价值的大数据的大幅增长。为了将传统的机器学习和数据分析技术应用于此类数据,有必要将图形转换为基于矢量的表示,以保留图形最重要的结构属性。为此,文献中已经提出了大量的图形嵌入方法。它们中的大多数产生了适用于各种应用的通用嵌入,例如节点聚类,节点分类,图形可视化和链接预测。在本文中,我们提出了两个新的图形嵌入算法,这些算法是基于专门为节点分类问题设计的随机步道。已设计算法的随机步行采样策略旨在特别注意集线器 - 高度节点,这些节点在大规模图中具有最关键的作用。通过分析对现实世界网络嵌入的三种分类算法的分类性能,对所提出的方法进行实验评估。获得的结果表明,与当前最流行的随机步行方法相比,我们的方法可大大提高所检查分类器的预测能力(NODE2VEC)。
translated by 谷歌翻译
对比学习已成为图形结构数据的自我监督学习方法的关键组成部分。然而,尽管取得了成功,但是现有的图形对比学习方法对于节点表示或其下游任务无能为力地定量,这限制了它们在高赌场域中的应用。在本文中,我们提出了一种新颖的贝叶斯视角,曲线图对比学习方法,显示随机增强导致随机编码器。结果,我们所提出的方法通过将每个节点嵌入到确定性矢量的现有技术对比潜空间中的分布来表示每个节点。通过学习分配表示,我们在下游图分析任务中提供不确定性估计,并提高预测模型的表现力。此外,我们提出了一个贝叶斯框架,以推断对比模型的每种视图中扰动的概率,消除了对普通参数调谐的计算昂贵的搜索需要。与在多个基准数据集上的现有最先进方法相比,我们经验凭经验显示了相当大的性能。
translated by 谷歌翻译
图形神经网络(GNNS)在提供图形结构时良好工作。但是,这种结构可能并不总是在现实世界应用中可用。该问题的一个解决方案是推断任务特定的潜在结构,然后将GNN应用于推断的图形。不幸的是,可能的图形结构的空间与节点的数量超级呈指数,因此任务特定的监督可能不足以学习结构和GNN参数。在这项工作中,我们提出了具有自我监督或拍打的邻接和GNN参数的同时学习,这是通过自我监督来推断图形结构的更多监督的方法。一个综合实验研究表明,缩小到具有数十万个节点的大图和胜过了几种模型,以便在已建立的基准上学习特定于任务的图形结构。
translated by 谷歌翻译
尽管在深度学习的其他应用领域中取得了非常深的架构,但流行的图神经网络是浅层模型。这降低了建模能力,并使模型无法捕获远程关系。浅设计的主要原因是过度平滑的,这导致节点状态随着深度的增加而变得更加相似。我们建立在GNNS和Pagerank之间的紧密联系的基础上,为此,个性化的Pagerank介绍了对个性化向量的考虑。通过这个想法,我们提出了个性化的Pagerank图神经网络(PPRGNN),该神经网络将图形卷积网络扩展到无限深度模型,该模型有机会将邻居聚集重置回每个迭代中的初始状态。我们引入了一个很好的解释调整,以重置重置并证明我们的方法与独特解决方案的收敛性,而无需放置任何限制,即使无限地进行了许多邻居聚集。与个性化的Pagerank一样,我们的结果不会过度光滑。在这样做的同时,在我们保持内存复杂性恒定的同时,时间复杂性保持线性,而与网络的深度无关,使其比较大图。我们从经验上展示了方法对各种节点和图形分类任务的有效性。在几乎所有情况下,PPRGNN优于可比较的方法。
translated by 谷歌翻译