我们提出了一个动量重新识别(莫雷德)框架,该框架可以利用大量的负面样本来进行一般性重新识别任务。该框架的设计灵感来自动量对比度(MOCO),该对比度(MOCO)使用词典来存储当前和过去的批次来构建大量编码样品。由于我们发现使用过去的阳性样品与当前正面样品形成的编码特征属性高度不一致是有效的,因此,莫雷德(Moreid)设计仅使用词典中存储的大量负样品。但是,如果我们使用仅使用一个样品代表一组正/负样本的广泛使用的三重损失训练该模型,则很难有效利用莫比德框架获得的扩大的负样本集。为了最大程度地利用缩放的负样品集的优势,我们新引入强距离弹性损失(HE损失),该损失能够使用多个硬样品来表示大量样品。我们的实验表明,只有在HE损失的情况下,才能充分利用莫雷德框架提供的大量负样本,从而达到三个重新ID基准测试的最新准确性,即Veri-776,Market-1501和veri-wild。
translated by 谷歌翻译
最先进的无监督的RE-ID方法使用基于内存的非参数软制AX丢失训练神经网络。存储在存储器中的实例特征向量通过群集和更新在实例级别中分配伪标签。然而,不同的簇大小导致每个群集的更新进度中的不一致。为了解决这个问题,我们呈现了存储特征向量的集群对比度,并计算群集级别的对比度损耗。我们的方法采用唯一的群集表示来描述每个群集,从而产生群集级存储字典。以这种方式,可以有效地保持聚类的一致性,在整个阶段,可以显着降低GPU存储器消耗。因此,我们的方法可以解决集群不一致的问题,并且适用于较大的数据集。此外,我们采用不同的聚类算法来展示我们框架的鲁棒性和泛化。与标准无监督的重新ID管道的集群对比的应用达到了9.9%,8.3%,12.1%的显着改善,而最新的无人纯粹无监督的重新ID方法和5.5%,4.8%,4.4%地图相比与市场,公爵和MSMT17数据集上的最先进的无监督域适应重新ID方法相比。代码可在https://github.com/alibaba/cluster-contrast获得。
translated by 谷歌翻译
Contrastive learning applied to self-supervised representation learning has seen a resurgence in recent years, leading to state of the art performance in the unsupervised training of deep image models. Modern batch contrastive approaches subsume or significantly outperform traditional contrastive losses such as triplet, max-margin and the N-pairs loss. In this work, we extend the self-supervised batch contrastive approach to the fully-supervised setting, allowing us to effectively leverage label information. Clusters of points belonging to the same class are pulled together in embedding space, while simultaneously pushing apart clusters of samples from different classes. We analyze two possible versions of the supervised contrastive (SupCon) loss, identifying the best-performing formulation of the loss. On ResNet-200, we achieve top-1 accuracy of 81.4% on the Ima-geNet dataset, which is 0.8% above the best number reported for this architecture. We show consistent outperformance over cross-entropy on other datasets and two ResNet variants. The loss shows benefits for robustness to natural corruptions, and is more stable to hyperparameter settings such as optimizers and data augmentations. Our loss function is simple to implement and reference TensorFlow code is released at https://t.ly/supcon 1 .
translated by 谷歌翻译
无监督的人重新识别(RE-ID)由于其可扩展性和对现实世界应用的可能性而吸引了增加的研究兴趣。最先进的无监督的重新ID方法通常遵循基于聚类的策略,该策略通过聚类来生成伪标签,并维护存储器以存储实例功能并代表群集的质心进行对比​​学习。这种方法遇到了两个问题。首先,无监督学习产生的质心可能不是一个完美的原型。强迫图像更接近质心,强调了聚类的结果,这可能会在迭代过程中积累聚类错误。其次,以前的方法利用在不同的训练迭代中获得的功能代表一种质心,这与当前的训练样本不一致,因为这些特征不是直接可比的。为此,我们通过随机学习策略提出了一种无监督的重新ID方法。具体来说,我们采用了随机更新的内存,其中使用集群的随机实例来更新群集级内存以进行对比度学习。这样,学会了随机选择的图像对之间的关​​系,以避免由不可靠的伪标签引起的训练偏见。随机内存也始终是最新的,以保持一致性。此外,为了减轻摄像机方差的问题,在聚类过程中提出了一个统一的距离矩阵,其中减少了不同摄像头域的距离偏置,并强调了身份的差异。
translated by 谷歌翻译
对比度学习(CL)方法有效地学习数据表示,而无需标记监督,在该方法中,编码器通过单VS-MONY SOFTMAX跨透镜损失将每个正样本在多个负样本上对比。通过利用大量未标记的图像数据,在Imagenet上预先训练时,最近的CL方法获得了有希望的结果,这是一个具有均衡图像类的曲制曲线曲线集。但是,当对野外图像进行预训练时,它们往往会产生较差的性能。在本文中,为了进一步提高CL的性能并增强其对未经保育数据集的鲁棒性,我们提出了一种双重的CL策略,该策略将其内部查询的正(负)样本对比,然后才能决定多么强烈地拉动(推)。我们通过对比度吸引力和对比度排斥(CACR)意识到这一策略,这使得查询不仅发挥了更大的力量来吸引更遥远的正样本,而且可以驱除更接近的负面样本。理论分析表明,CACR通过考虑正/阴性样品的分布之间的差异来概括CL的行为,而正/负样品的分布通常与查询独立进行采样,并且它们的真实条件分布给出了查询。我们证明了这种独特的阳性吸引力和阴性排斥机制,这有助于消除在数据集的策划较低时尤其有益于数据及其潜在表示的统一先验分布的需求。对许多标准视觉任务进行的大规模大规模实验表明,CACR不仅在表示学习中的基准数据集上始终优于现有的CL方法,而且在对不平衡图像数据集进行预训练时,还表现出更好的鲁棒性。
translated by 谷歌翻译
In this paper, we are interested in learning a generalizable person re-identification (re-ID) representation from unlabeled videos. Compared with 1) the popular unsupervised re-ID setting where the training and test sets are typically under the same domain, and 2) the popular domain generalization (DG) re-ID setting where the training samples are labeled, our novel scenario combines their key challenges: the training samples are unlabeled, and collected form various domains which do no align with the test domain. In other words, we aim to learn a representation in an unsupervised manner and directly use the learned representation for re-ID in novel domains. To fulfill this goal, we make two main contributions: First, we propose Cycle Association (CycAs), a scalable self-supervised learning method for re-ID with low training complexity; and second, we construct a large-scale unlabeled re-ID dataset named LMP-video, tailored for the proposed method. Specifically, CycAs learns re-ID features by enforcing cycle consistency of instance association between temporally successive video frame pairs, and the training cost is merely linear to the data size, making large-scale training possible. On the other hand, the LMP-video dataset is extremely large, containing 50 million unlabeled person images cropped from over 10K Youtube videos, therefore is sufficient to serve as fertile soil for self-supervised learning. Trained on LMP-video, we show that CycAs learns good generalization towards novel domains. The achieved results sometimes even outperform supervised domain generalizable models. Remarkably, CycAs achieves 82.2% Rank-1 on Market-1501 and 49.0% Rank-1 on MSMT17 with zero human annotation, surpassing state-of-the-art supervised DG re-ID methods. Moreover, we also demonstrate the superiority of CycAs under the canonical unsupervised re-ID and the pretrain-and-finetune scenarios.
translated by 谷歌翻译
深度神经网络在严重的类不平衡数据集上的表现不佳。鉴于对比度学习的有希望的表现,我们提出了重新平衡的暹罗对比度采矿(RESCOM)来应对不平衡的识别。基于数学分析和仿真结果,我们声称监督的对比学习在原始批次和暹罗批次水平上都遭受双重失衡问题,这比长尾分类学习更为严重。在本文中,在原始批处理水平上,我们引入了级别平衡的监督对比损失,以分配不同类别的自适应权重。在暹罗批次级别,我们提出了一个级别平衡的队列,该队列维持所有类的键相同。此外,我们注意到,相对于对比度逻辑的不平衡对比损失梯度可以将其分解为阳性和负面因素,易于阳性和易于负面因素将使对比度梯度消失。我们建议有监督的正面和负面对挖掘,以获取信息对的对比度计算并改善表示形式学习。最后,为了大致最大程度地提高两种观点之间的相互信息,我们提出了暹罗平衡的软性软件,并与一阶段训练的对比损失结合。广泛的实验表明,在多个长尾识别基准上,RESCON优于先前的方法。我们的代码和模型可公开可用:https://github.com/dvlab-research/rescom。
translated by 谷歌翻译
Person re-identification (Re-ID) aims at retrieving a person of interest across multiple non-overlapping cameras. With the advancement of deep neural networks and increasing demand of intelligent video surveillance, it has gained significantly increased interest in the computer vision community. By dissecting the involved components in developing a person Re-ID system, we categorize it into the closed-world and open-world settings. The widely studied closed-world setting is usually applied under various research-oriented assumptions, and has achieved inspiring success using deep learning techniques on a number of datasets. We first conduct a comprehensive overview with in-depth analysis for closed-world person Re-ID from three different perspectives, including deep feature representation learning, deep metric learning and ranking optimization. With the performance saturation under closed-world setting, the research focus for person Re-ID has recently shifted to the open-world setting, facing more challenging issues. This setting is closer to practical applications under specific scenarios. We summarize the open-world Re-ID in terms of five different aspects. By analyzing the advantages of existing methods, we design a powerful AGW baseline, achieving state-of-the-art or at least comparable performance on twelve datasets for FOUR different Re-ID tasks. Meanwhile, we introduce a new evaluation metric (mINP) for person Re-ID, indicating the cost for finding all the correct matches, which provides an additional criteria to evaluate the Re-ID system for real applications. Finally, some important yet under-investigated open issues are discussed.
translated by 谷歌翻译
最近的研究表明,明确的深度特征匹配以及大规模和多样化的训练数据都可以显着提高人员重新识别的泛化。然而,在大规模数据上学习深度匹配者的效率尚未得到充分研究。虽然使用分类参数或课程内存是一种流行的方式,但它会引发大的内存和计算成本。相比之下,迷你批量内的成对深度度量学习将是一个更好的选择。然而,最受欢迎的随机采样方法,众所周知的PK采样器,对深度度量学习不是信息性和有效的。虽然在线硬示例挖掘在一定程度上提高了学习效率,但随机采样后迷你批次仍然有限。这激发了我们在数据采样阶段之前探讨了先前使用硬示例挖掘。为此,在本文中,我们提出了一种有效的跨批量采样方法,称为图形采样(GS),用于大规模深度度量学习。基本思想是为每个时代开始的所有类构建最近的邻居关系图。然后,每个迷你批处理由随机选择的类和其最近的邻类组成,以便为学习提供信息和具有挑战性的例子。与适应的竞争性基线一起,我们在更广泛的人中改善了先前的最先进状态,在MAP中最明显重新鉴定,高达24%和13.8%。此外,所提出的方法还优于竞争性基线在地图中排名-1和5.3%的竞争性基线。同时,培训时间明显减少了多达五次,例如五次。在具有8,000个身份的大型数据集中培训12.2小时至2.3小时。代码可在https://github.com/shengcailiao/qaconv获得。
translated by 谷歌翻译
这项工作旨在改善具有自我监督的实例检索。我们发现使用最近开发的自我监督(SSL)学习方法(如SIMCLR和MOCO)的微调未能提高实例检索的性能。在这项工作中,我们确定了例如检索的学习表示应该是不变的视点和背景等的大变化,而当前SSL方法应用的自增强阳性不能为学习强大的实例级别表示提供强大的信号。为了克服这个问题,我们提出了一种在\ texit {实例级别}对比度上建立的新SSL方法,以通过动态挖掘迷你批次和存储库来学习类内不变性训练。广泛的实验表明,insclr在实例检索上实现了比最先进的SSL方法更类似或更好的性能。代码可在https://github.com/zeludeng/insclr获得。
translated by 谷歌翻译
产品匹配是全球对电子商务消费者行为的理解的基本步骤。实际上,产品匹配是指确定来自不同数据源(例如零售商)是否提供两个产品的任务。标准管道使用以前的阶段,称为阻止,其中给定产品提供了一组潜在的匹配候选者,以相似的特征(例如相同的品牌,类别,风味等)检索。从这些类似的候选产品中,那些不匹配的产品可以被视为艰难的负面因素。我们提出了Block-SCL,该策略使用阻止输出来充分利用监督的对比度学习(SCL)。具体而言,块-SCL使用在阻塞阶段获得的硬性样本来构建丰富的批处理。这些批次提供了一个强大的训练信号,导致该模型了解产品匹配的更有意义的句子嵌入。几个公共数据集中的实验结果表明,尽管仅将短产品标题作为输入,没有数据增强和更轻的变压器主链比竞争方法,但Block-SCL仍取得了最新的结果。
translated by 谷歌翻译
现有人重新识别(Reid)方法通常直接加载预先训练的ImageNet权重以进行初始化。然而,作为一个细粒度的分类任务,Reid更具挑战性,并且存在于想象成分类之间的大域差距。在本文中,通过自我监督的代表性的巨大成功的巨大成功,在本文中,我们为基于对比学习(CL)管道的对比训练,为REID设计了一个无人监督的训练框架,被称为上限。在预培训期间,我们试图解决学习细粒度的重点问题的两个关键问题:(1)CL流水线中的增强可能扭曲人物图像中的鉴别条款。 (2)未完全探索人物图像的细粒度局部特征。因此,我们在Up-Reid中引入了一个身份内 - 身份(i $ ^ 2 $ - )正则化,该正常化是从全局图像方面和本地补丁方面的两个约束:在增强和原始人物图像之间强制强制实施全局一致性为了增加增强的稳健性,而使用每个图像的本地斑块之间的内在对比度约束来完全探索局部鉴别的线索。在多个流行的RE-ID数据集上进行了广泛的实验,包括PersonX,Market1501,CuHK03和MSMT17,表明我们的上部Reid预训练模型可以显着使下游REID微调和实现最先进的性能。代码和模型将被释放到https://github.com/frost-yang-99/up -reid。
translated by 谷歌翻译
我们研究人员重新识别(RE-ID)的向后兼容问题,该问题旨在限制更新的新模型的功能,以与画廊中旧模型的现有功能相提并论。大多数现有作品都采用基于蒸馏的方法,这些方法着重于推动新功能模仿旧功能。但是,基于蒸馏的方法本质上是最佳的,因为它迫使新的特征空间模仿旧特征空间。为了解决这个问题,我们提出了基于排名的向后兼容学习(RBCL),该学习直接优化了新功能和旧功能之间的排名指标。与以前的方法不同,RBCL仅推动新功能以在旧功能空间而不是严格对齐中找到最佳的位置,并且与向后检索的最终目标保持一致。但是,用于使排名度量可区分的尖锐的Sigmoid函数也会导致梯度消失的问题,因此在训练后期的时期造成了排名的完善。为了解决这个问题,我们提出了动态梯度重新激活(DGR),可以通过在远期步骤中添加动态计算的常数来重新激活抑制梯度。为了进一步帮助目标最佳位置,我们包括邻居上下文代理(NCAS),以近似训练期间的整个旧特征空间。与以前仅在内域设置上测试的作品不同,我们首次尝试引入跨域设置(包括受监督和无监督的),这更有意义和困难。所有五个设置上的实验结果表明,在所有设置下,提出的RBCL都以大幅度优于先前的最新方法。
translated by 谷歌翻译
人重新识别是识别非重叠摄像机的个体的问题。尽管在重新识别问题中取得了显着进展,但由于同一人的外观变化以及其他外观相似的人,这仍然是一个具有挑战性的问题。一些先前的作品通过将正样本的特征与负面的特征分开来解决这些问题。但是,现有模型的性能在很大程度上取决于用于培训的样品的特征和统计数据。因此,我们提出了一个名为“采样独立鲁棒特征表示网络”(sirnet)的新型框架,该框架学习了从随机选择的样品中嵌入的分离特征。对精心设计的采样独立的最大差异损失引入了与集群同一人的模型样本。结果,所提出的框架可以使用学识渊博的功能产生额外的硬质量/积极因素,从而可以更好地辨别其他身份。大规模基准数据集的广泛实验结果验证了所提出的模型比以前的最新模型更有效。
translated by 谷歌翻译
This paper studies the unsupervised embedding learning problem, which requires an effective similarity measurement between samples in low-dimensional embedding space. Motivated by the positive concentrated and negative separated properties observed from category-wise supervised learning, we propose to utilize the instance-wise supervision to approximate these properties, which aims at learning data augmentation invariant and instance spreadout features. To achieve this goal, we propose a novel instance based softmax embedding method, which directly optimizes the 'real' instance features on top of the softmax function. It achieves significantly faster learning speed and higher accuracy than all existing methods. The proposed method performs well for both seen and unseen testing categories with cosine similarity. It also achieves competitive performance even without pre-trained network over samples from fine-grained categories.
translated by 谷歌翻译
大多数深度度量学习(DML)方法采用了一种策略,该策略迫使所有积极样本在嵌入空间中靠近,同时使它们远离负面样本。但是,这种策略忽略了正(负)样本的内部关系,并且通常导致过度拟合,尤其是在存在硬样品和标签错误的情况下。在这项工作中,我们提出了一个简单而有效的正则化,即列表自我验证(LSD),该化逐渐提炼模型的知识,以适应批处理中每个样本对的更合适的距离目标。LSD鼓励在正(负)样本中更平稳的嵌入和信息挖掘,以减轻过度拟合并从而改善概括。我们的LSD可以直接集成到一般的DML框架中。广泛的实验表明,LSD始终提高多个数据集上各种度量学习方法的性能。
translated by 谷歌翻译
与基于现代聚类算法的完全监督的REID方法相比,未经监督的人重新识别(U-Reid)最近达到了竞争性能。然而,这种基于聚类的方案对大规模数据集来说变得对计算方式。如何探讨如何有效利用具有有限计算资源的无限未标记的数据,以便更好地进行更好的U-Reid。在本文中,我们首次尝试大规模U-Reid并提出一个“大型任务的小数据”范式被称为Meta聚类学习(MCL)。 MCL仅通过群集伪标记整个未标记数据的子集,以节省第一期训练的计算。之后,被学习的集群中心称为我们的MCL中的元原型,被视为代理注释器,以便轻松注释其它未标记数据以进一步抛光模型。为了缓解抛光阶段的潜在嘈杂的标签问题,我们强制执行两个精心设计的损失限制,以保证境内统一的一致性和相互识别的强烈相关性。对于多个广泛使用的U-REID基准测试,我们的方法显着节省了计算成本,同时与先前作品相比,实现了可比或更好的性能。
translated by 谷歌翻译
Recent years witnessed the breakthrough of face recognition with deep convolutional neural networks. Dozens of papers in the field of FR are published every year. Some of them were applied in the industrial community and played an important role in human life such as device unlock, mobile payment, and so on. This paper provides an introduction to face recognition, including its history, pipeline, algorithms based on conventional manually designed features or deep learning, mainstream training, evaluation datasets, and related applications. We have analyzed and compared state-of-the-art works as many as possible, and also carefully designed a set of experiments to find the effect of backbone size and data distribution. This survey is a material of the tutorial named The Practical Face Recognition Technology in the Industrial World in the FG2023.
translated by 谷歌翻译
We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning [29] as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.
translated by 谷歌翻译
对比学习(CL)是自我监督学习(SSL)最成功的范式之一。它以原则上的方式考虑了两个增强的“视图”,同一图像是正面的,将其拉近,所有其他图像都是负面的。但是,在基于CL的技术的令人印象深刻的成功之后,它们的配方通常依赖于重型设置,包括大型样品批次,广泛的培训时代等。因此,我们有动力解决这些问题并建立一个简单,高效但有竞争力的问题对比学习的基线。具体而言,我们从理论和实证研究中鉴定出对广泛使用的Infonce损失的显着负阳性耦合(NPC)效应,从而导致有关批处理大小的不合适的学习效率。通过消除NPC效应,我们提出了脱钩的对比度学习(DCL)损失,该损失从分母中删除了积极的术语,并显着提高了学习效率。 DCL对竞争性表现具有较小的对亚最佳超参数的敏感性,既不需要SIMCLR中的大批量,Moco中的动量编码或大型时代。我们以各种基准来证明,同时表现出对次优的超参数敏感的鲁棒性。值得注意的是,具有DCL的SIMCLR在200个时期内使用批次尺寸256实现68.2%的Imagenet-1K TOP-1精度,在预训练中的表现优于其SIMCLR基线6.4%。此外,DCL可以与SOTA对比度学习方法NNCLR结合使用,以达到72.3%的Imagenet-1k Top-1精度,在400个时期的512批次大小中,这代表了对比学习中的新SOTA。我们认为DCL为将来的对比SSL研究提供了宝贵的基准。
translated by 谷歌翻译