Graph神经体系结构搜索(Graphnas)最近引起了学术界和工业的关注。但是,两个主要挑战严重阻碍了对石墨的进一步研究。首先,由于实验环境没有共识,因此不同研究论文中的经验结果通常是不可比服的,甚至不可再现,从而导致不公平的比较。其次,石墨通常需要进行广泛的计算,这使得研究人员无法访问大规模计算,这使其高效且无法访问。为了解决这些挑战,我们提出了NAS Bench-Graph,这是一种量身定制的基准测试,该基准支持统一,可重现和有效的Gragennas评估。具体而言,我们构建了一个统一,表现力但紧凑的搜索空间,涵盖26,206个独特的图形神经网络(GNN)体系结构,并提出了原则评估协议。为了避免不必要的重复培训,我们已经在九个代表性的图形数据集上培训和评估了所有这些架构,记录了详细的指标,包括火车,验证和测试性能,每个时期,延迟,参数数量等。基准测试,可以通过查找表直接获得GNN体系结构的性能,而无需任何进一步的计算,这可以实现公平,完全可重现和有效的比较。为了证明其使用情况,我们对我们提出的NAS基础图表进行了深入的分析,从而揭示了一些有关Graphnas的有趣发现。我们还展示了如何轻松地与诸如autogl和nni之类的诸如AutoGL和NNI之类的Graphnas开放库兼容。据我们所知,我们的工作是图形神经架构搜索的第一个基准。
translated by 谷歌翻译
学术界和工业广泛研究了图形机器学习。然而,作为图表学习繁荣的文献,具有大量的新兴方法和技术,它越来越难以手动设计用于不同的图形相关任务的最佳机器学习算法。为了解决挑战,自动化图形机器学习,目的是在没有手动设计的不同图表任务/数据中发现最好的图形任务/数据的最佳超参数和神经架构配置,正在增加研究界的越来越多的关注。在本文中,我们广泛地讨论了自动化图形机方法,涵盖了用于图形机学习的超参数优化(HPO)和神经架构搜索(NAS)。我们简要概述了专为Traph Machine学习或自动化机器学习而设计的现有库,进一步深入介绍AutoGL,我们的专用和世界上第一个用于自动图形机器学习的开放源库。最后但并非最不重要的是,我们分享了对自动图形机学习的未来研究方向的见解。本文是对自动图形机学习的方法,图书馆以及方向的第一个系统和全面讨论。
translated by 谷歌翻译
学术和工业中,在图表上进行了广泛的研究。然而,作为图表学习繁荣的文献,具有大量的新兴方法和技术,它越来越难以手动设计用于不同的图形相关任务的最佳机器学习算法。为解决这一关键挑战,将图形机器学习和自动化强度相结合的图形上的自动化机器学习(Automl)正在研究研究界的关注。因此,我们在本文中全面调查了Automl,主要关注用于图形机学习的超参数优化(HPO)和神经结构搜索(NAS)。我们进一步概述了与自动图形机器学习和深入讨论AutoGL相关的库,这是图形上的Automl的第一个专用开源库。最终,我们分享了对自动图机学习的未来研究方向的见解。本文是对我们所知的最佳自动化机器学习的第一个系统和全面审查。
translated by 谷歌翻译
图形神经网络(GNN)已被密切应用于各种基于图的应用程序。尽管他们成功了,但手动设计行为良好的GNN需要巨大的人类专业知识。因此,发现潜在的最佳数据特异性GNN体系结构效率低下。本文提出了DFG-NAS,这是一种新的神经体系结构搜索(NAS)方法,可自动搜索非常深入且灵活的GNN体系结构。与大多数专注于微构造的方法不同,DFG-NAS突出了另一个设计级别:搜索有关原子传播的宏观构造(\ TextBf {\ Textbf {\ Texttt {p}}})和转换(\ texttt {\ textttt {\ texttt {\ texttt {\ texttt { T}})的操作被整合并组织到GNN中。为此,DFG-NAS为\ textbf {\ texttt {p-t}}}的排列和组合提出了一个新颖的搜索空间,该搜索空间是基于消息传播的散布,定义了四个自定义设计的宏观架构突变,并采用了进化性algorithm to to the Evolutionary algorithm进行有效的搜索。关于四个节点分类任务的实证研究表明,DFG-NAS优于最先进的手动设计和GNN的NAS方法。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在不同的现实应用中表现出卓越的性能。为了提高模型容量,除了设计聚合运作,GNN拓扑设计也非常重要。一般来说,有两个主流GNN拓扑设计方式。第一个是堆叠聚合操作以获得更高级别的功能,但随着网络更深的方式,易于进行性能下降。其次,在每个层中使用多聚合操作,该层在本地邻居提供足够和独立的特征提取阶段,同时获得更高级别的信息昂贵。为了享受减轻这两个方式的相应缺陷的同时享受福利,我们学会在一个新颖的特征融合透视中设计GNN的拓扑,这些融合透视中被称为F $ ^ 2 $ GNN。具体而言,我们在设计GNN拓扑中提供了一个特征融合视角,提出了一种新颖的框架,以统一现有的拓扑设计,具有特征选择和融合策略。然后,我们在统一框架之上开发一个神经结构搜索方法,该方法包含在搜索空间中的一组选择和融合操作以及改进的可微分搜索算法。八个现实数据集的性能增益展示了F $ ^ 2 $ GNN的有效性。我们进一步开展实验,以证明F $ ^ 2 $ GNN可以通过自适应使用不同程度的特征来缓解现有GNN拓扑设计方式的缺陷,同时提高模型容量,同时减轻了现有的GNN拓扑设计方式的缺陷,特别是缓解过平滑问题。
translated by 谷歌翻译
近年来,图形神经网络(GNNS)在现实世界数据集上对不同应用的不同应用表现出卓越的性能。为了提高模型能力并减轻过平滑问题,提出了几种方法通过层面连接来掺入中间层。但是,由于具有高度多样化的图形类型,现有方法的性能因不同的图形而异,导致需要数据特定的层面连接方法。为了解决这个问题,我们提出了一种基于神经结构搜索(NAS)的新颖框架LLC(学习层面连接),以学习GNN中中间层之间的自适应连接。 LLC包含一个新颖的搜索空间,由3种类型的块和学习连接以及一个可分辨率搜索过程组成,以实现有效的搜索过程。对五个现实数据集进行了广泛的实验,结果表明,搜索的层面连接不仅可以提高性能,而且还可以缓解过平滑的问题。
translated by 谷歌翻译
Neural architectures can be naturally viewed as computational graphs. Motivated by this perspective, we, in this paper, study neural architecture search (NAS) through the lens of learning random graph models. In contrast to existing NAS methods which largely focus on searching for a single best architecture, i.e, point estimation, we propose GraphPNAS a deep graph generative model that learns a distribution of well-performing architectures. Relying on graph neural networks (GNNs), our GraphPNAS can better capture topologies of good neural architectures and relations between operators therein. Moreover, our graph generator leads to a learnable probabilistic search method that is more flexible and efficient than the commonly used RNN generator and random search methods. Finally, we learn our generator via an efficient reinforcement learning formulation for NAS. To assess the effectiveness of our GraphPNAS, we conduct extensive experiments on three search spaces, including the challenging RandWire on TinyImageNet, ENAS on CIFAR10, and NAS-Bench-101/201. The complexity of RandWire is significantly larger than other search spaces in the literature. We show that our proposed graph generator consistently outperforms RNN-based one and achieves better or comparable performances than state-of-the-art NAS methods.
translated by 谷歌翻译
图形神经网络(GNNS)已经变得越来越流行,并且在许多基于图形的应用程序中实现了令人印象深刻的结果。但是,需要广泛的手动工作和域知识来设计有效的架构,GNN模型的结果具有高差异,与不同的培训设置相比,限制了现有GNN模型的应用。在本文中,我们展示了AutoHensgnn,这是一个框架,用于为图表任务构建有效和强大的模型而没有任何人为干预。 Autohensgnn在kdd杯2020年签名挑战中赢得了第一名,并在最终阶段实现了五个现实生活数据集的最佳等级分数。鉴于任务,AutoHensgnn首先应用一个快速的代理评估,以自动选择有希望的GNN模型的池。然后它构建了一个分层合奏框架:1)我们提出图形自我合奏(GSE),这可以减少重量初始化的方差,有效利用本地和全球街区的信息; 2)基于GSE,使用不同类型的GNN模型的加权集合来有效地学习更多辨别节点表示。为了有效地搜索体系结构和合奏权重,我们提出了AutoHensgnn $ _ {\ text {梯度}} $,它将架构和集合权重视为架构参数,并使用基于梯度的架构搜索来获得最佳配置,而autohensgnn $ {autohensgnn $ { \文本{Adaptive}} $,可以根据模型精度自适应地调整集合重量。关于节点分类的广泛实验,图形分类,边缘预测和KDD杯挑战表明了Autohensgnn的有效性和一般性
translated by 谷歌翻译
最近,图形神经网络(GNNS)在各种现实情景中获得了普及。尽管取得了巨大成功,但GNN的建筑设计严重依赖于体力劳动。因此,自动化图形神经网络(Autopmn)引起了研究界的兴趣和关注,近年来显着改善。然而,现有的autopnn工作主要采用隐式方式来模拟并利用图中的链接信息,这对图中的链路预测任务不充分规范化,并限制了自动启动的其他图表任务。在本文中,我们介绍了一个新的Autognn工作,该工作明确地模拟了缩写为autogel的链接信息。以这种方式,AutoGel可以处理链路预测任务并提高Autognns对节点分类和图形分类任务的性能。具体地,AutoGel提出了一种新的搜索空间,包括层内和层间设计中的各种设计尺寸,并采用更强大的可分辨率搜索算法,以进一步提高效率和有效性。基准数据集的实验结果展示了自动池上的优势在几个任务中。
translated by 谷歌翻译
图神经网络(GNN)在节点分类任务上取得了巨大成功。尽管对开发和评估GNN具有广泛的兴趣,但它们已经通过有限的基准数据集进行了评估。结果,现有的GNN评估缺乏来自图的各种特征的细粒分析。在此激励的情况下,我们对合成图生成器进行了广泛的实验,该实验可以生成具有控制特征以进行细粒分析的图形。我们的实证研究阐明了带有节点类标签的真实图形标签的四个主要特征的GNN的优势和劣势,即1)类规模分布(平衡与失衡),2)等级之间的边缘连接比例(均质VS之间)异性词),3)属性值(偏见与随机),4)图形大小(小与大)。此外,为了促进对GNN的未来研究,我们公开发布了我们的代码库,该代码库允许用户用各种图表评估各种GNN。我们希望这项工作为未来的研究提供有趣的见解。
translated by 谷歌翻译
Recent advances in neural architecture search (NAS) demand tremendous computational resources, which makes it difficult to reproduce experiments and imposes a barrier-to-entry to researchers without access to large-scale computation. We aim to ameliorate these problems by introducing NAS-Bench-101, the first public architecture dataset for NAS research. To build NAS-Bench-101, we carefully constructed a compact, yet expressive, search space, exploiting graph isomorphisms to identify 423k unique convolutional architectures. We trained and evaluated all of these architectures multiple times on CIFAR-10 and compiled the results into a large dataset of over 5 million trained models. This allows researchers to evaluate the quality of a diverse range of models in milliseconds by querying the precomputed dataset. We demonstrate its utility by analyzing the dataset as a whole and by benchmarking a range of architecture optimization algorithms.
translated by 谷歌翻译
We present the OPEN GRAPH BENCHMARK (OGB), a diverse set of challenging and realistic benchmark datasets to facilitate scalable, robust, and reproducible graph machine learning (ML) research. OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs. For each dataset, we provide a unified evaluation protocol using meaningful application-specific data splits and evaluation metrics. In addition to building the datasets, we also perform extensive benchmark experiments for each dataset. Our experiments suggest that OGB datasets present significant challenges of scalability to large-scale graphs and out-of-distribution generalization under realistic data splits, indicating fruitful opportunities for future research. Finally, OGB provides an automated end-to-end graph ML pipeline that simplifies and standardizes the process of graph data loading, experimental setup, and model evaluation. OGB will be regularly updated and welcomes inputs from the community. OGB datasets as well as data loaders, evaluation scripts, baseline code, and leaderboards are publicly available at https://ogb.stanford.edu.
translated by 谷歌翻译
大多数现有的神经体系结构搜索(NAS)基准和算法优先考虑了良好的任务,例如CIFAR或Imagenet上的图像分类。这使得在更多样化的领域的NAS方法的表现知之甚少。在本文中,我们提出了NAS-Bench-360,这是一套基准套件,用于评估超出建筑搜索传统研究的域的方法,并使用它来解决以下问题:最先进的NAS方法在多样化的任务?为了构建基准测试,我们策划了十个任务,这些任务涵盖了各种应用程序域,数据集大小,问题维度和学习目标。小心地选择每个任务与现代CNN的搜索方法互操作,同时可能与其原始开发领域相距遥远。为了加快NAS研究的成本,对于其中两个任务,我们发布了包括标准CNN搜索空间的15,625个体系结构的预定性能。在实验上,我们表明需要对NAS BENCH-360进行更强大的NAS评估,从而表明几种现代NAS程序在这十个任务中执行不一致,并且有许多灾难性差的结果。我们还展示了NAS Bench-360及其相关的预算结果将如何通过测试NAS文献中最近推广的一些假设来实现未来的科学发现。 NAS-Bench-360托管在https://nb360.ml.cmu.edu上。
translated by 谷歌翻译
针对OGB图分类任务中的两个分子图数据集和一个蛋白质关联子图数据集,我们通过引入PAS(池架构搜索)设计一个图形神经网络框架,用于图形分类任务。同时,我们根据GNN拓扑设计方法F2GNN进行改进GNN培训。最后,在这三个数据集上实现了性能突破,这比具有固定聚合功能的其他方法要好得多。事实证明,NAS方法具有多个任务的高概括能力以及我们在处理图形属性预测任务方面的优势。
translated by 谷歌翻译
当前的图形神经网络(GNNS)遇到了过度光滑的问题,这导致无法区分的节点表示和较低的模型性能,并具有更多的GNN层。近年来已经提出了许多方法来解决这个问题。但是,现有的解决过度平滑的方法强调模型性能并忽略节点表示的过度平滑度。一次采用另外一种方法,同时缺乏整体框架​​来共同利用多个解决方案来解决过度光滑的挑战。为了解决这些问题,我们提出了Grato,这是一个基于神经体系结构搜索的框架,以自动搜索GNNS体系结构。 Grato采用新颖的损失功能,以促进模型性能和表示平滑度之间的平衡。除了现有方法外,我们的搜索空间还包括DropAttribute,这是一种减轻过度光滑挑战的新计划,以充分利用各种解决方案。我们在六个现实世界数据集上进行了广泛的实验,以评估Grato,这表明Grato在过度平滑的指标中的表现优于基准,并在准确性方面取得了竞争性能。 Grato在GNN层数量增加的情况下特别有效且健壮。进一步的实验确定了通过grato学习的节点表示的质量和模型架构的有效性。我们在Github(\ url {https://github.com/fxsxjtu/grato})上提供Grato的CIDE。
translated by 谷歌翻译
图表神经架构搜索已在最近成功应用于非欧几里德数据上成功应用的图形神经网络(GNNS)得到了很多关注。但是,探索庞大的搜索空间中的所有可能的GNN架构都太耗时或无法对大图数据进行耗时或不可能。在本文中,我们提出了一个平行的图形架构搜索(GraphPas)图形神经网络的框架。在GraphPas中,我们通过设计基于共享的演进学习来探索搜索空间,可以在不失去准确性的情况下提高搜索效率。此外,架构信息熵是动态采用的突变选择概率,这可以减少空间探索。实验结果表明,GraphPas以效率和准确性同时占据了最先进的模型。
translated by 谷歌翻译
网络体系结构设计的持续进步导致了各种具有挑战性的计算机视觉任务的深入学习取得的显着成就。同时,神经体系结构搜索(NAS)的开发提供了有前途的方法来自动化网络体系结构的设计,从而获得较低的预测错误。最近,深入学习的新兴应用程序方案提高了考虑多个设计标准的网络体系结构的更高需求:参数/浮点操作的数量以及推理延迟等。从优化的角度来看,涉及多个设计标准的NAS任务是本质上多目标优化问题。因此,采用进化的多目标优化(EMO)算法来解决它们是合理的。尽管如此,仍然存在一个明显的差距,将相关研究沿着这一途径限制:一方面,从优化的角度出发,缺乏NAS任务的一般问题。另一方面,在NAS任务上对EMO算法进行基准评估存在挑战。弥合差距:(i)我们将NAS任务制定为一般的多目标优化问题,并从优化的角度分析复杂特征; (ii)我们提出了一条端到端管道,称为$ \ texttt {evoxbench} $,以生成Emo算法的基准测试问题,以有效运行 - 无需GPU或Pytorch/tensorflow; (iii)我们实例化了两个测试套件,全面涵盖了两个数据集,七个搜索空间和三个硬件设备,最多涉及八个目标。基于上述内容,我们使用六种代表性的EMO算法验证了提出的测试套件,并提供了一些经验分析。 $ \ texttt {evoxBench} $的代码可从$ \ href {https://github.com/emi-group/evoxbench} {\ rm {there}} $。
translated by 谷歌翻译
Recent works have impressively demonstrated that there exists a subnetwork in randomly initialized convolutional neural networks (CNNs) that can match the performance of the fully trained dense networks at initialization, without any optimization of the weights of the network (i.e., untrained networks). However, the presence of such untrained subnetworks in graph neural networks (GNNs) still remains mysterious. In this paper we carry out the first-of-its-kind exploration of discovering matching untrained GNNs. With sparsity as the core tool, we can find \textit{untrained sparse subnetworks} at the initialization, that can match the performance of \textit{fully trained dense} GNNs. Besides this already encouraging finding of comparable performance, we show that the found untrained subnetworks can substantially mitigate the GNN over-smoothing problem, hence becoming a powerful tool to enable deeper GNNs without bells and whistles. We also observe that such sparse untrained subnetworks have appealing performance in out-of-distribution detection and robustness of input perturbations. We evaluate our method across widely-used GNN architectures on various popular datasets including the Open Graph Benchmark (OGB).
translated by 谷歌翻译
神经体系结构搜索(NAS)最近在深度学习社区中变得越来越流行,主要是因为它可以提供一个机会,使感兴趣的用户没有丰富的专业知识,从而从深度神经网络(DNNS)的成功中受益。但是,NAS仍然很费力且耗时,因为在NAS的搜索过程中需要进行大量的性能估计,并且训练DNNS在计算上是密集的。为了解决NAS的主要局限性,提高NAS的效率对于NAS的设计至关重要。本文以简要介绍了NAS的一般框架。然后,系统地讨论了根据代理指标评估网络候选者的方法。接下来是对替代辅助NAS的描述,该NAS分为三个不同类别,即NAS的贝叶斯优化,NAS的替代辅助进化算法和NAS的MOP。最后,讨论了剩余的挑战和开放研究问题,并在这个新兴领域提出了有希望的研究主题。
translated by 谷歌翻译
Neural architecture search (NAS) is a promising research direction that has the potential to replace expert-designed networks with learned, task-specific architectures. In this work, in order to help ground the empirical results in this field, we propose new NAS baselines that build off the following observations: (i) NAS is a specialized hyperparameter optimization problem; and (ii) random search is a competitive baseline for hyperparameter optimization. Leveraging these observations, we evaluate both random search with early-stopping and a novel random search with weight-sharing algorithm on two standard NAS benchmarks-PTB and CIFAR-10. Our results show that random search with early-stopping is a competitive NAS baseline, e.g., it performs at least as well as ENAS [41], a leading NAS method, on both benchmarks. Additionally, random search with weight-sharing outperforms random search with early-stopping, achieving a state-of-the-art NAS result on PTB and a highly competitive result on CIFAR-10. Finally, we explore the existing reproducibility issues of published NAS results. We note the lack of source material needed to exactly reproduce these results, and further discuss the robustness of published results given the various sources of variability in NAS experimental setups. Relatedly, we provide all information (code, random seeds, documentation) needed to exactly reproduce our results, and report our random search with weight-sharing results for each benchmark on multiple runs.
translated by 谷歌翻译