We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent. We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.
translated by 谷歌翻译
Estimating and optimizing Mutual Information (MI) is core to many problems in machine learning; however, bounding MI in high dimensions is challenging. To establish tractable and scalable objectives, recent work has turned to variational bounds parameterized by neural networks, but the relationships and tradeoffs between these bounds remains unclear. In this work, we unify these recent developments in a single framework. We find that the existing variational lower bounds degrade when the MI is large, exhibiting either high bias or high variance. To address this problem, we introduce a continuum of lower bounds that encompasses previous bounds and flexibly trades off bias and variance. On high-dimensional, controlled problems, we empirically characterize the bias and variance of the bounds and their gradients and demonstrate the effectiveness of our new bounds for estimation and representation learning.
translated by 谷歌翻译
瓶颈问题是一系列重要的优化问题,最近在机器学习和信息理论领域引起了人们的关注。它们被广泛用于生成模型,公平的机器学习算法,对隐私保护机制的设计,并在各种多用户通信问题中作为信息理论性能界限出现。在这项工作中,我们提出了一个普通的优化问题家族,称为复杂性 - 裸露的瓶颈(俱乐部)模型,该模型(i)提供了一个统一的理论框架,该框架将大多数最先进的文献推广到信息理论隐私模型(ii)建立了对流行的生成和判别模型的新解释,(iii)构建了生成压缩模型的新见解,并且(iv)可以在公平的生成模型中使用。我们首先将俱乐部模型作为复杂性约束的隐私性优化问题。然后,我们将其与密切相关的瓶颈问题(即信息瓶颈(IB),隐私渠道(PF),确定性IB(DIB),条件熵瓶颈(CEB)和有条件的PF(CPF)连接。我们表明,俱乐部模型概括了所有这些问题以及大多数其他信息理论隐私模型。然后,我们通过使用神经网络来参数化相关信息数量的变异近似来构建深层俱乐部(DVCLUB)模型。在这些信息数量的基础上,我们提出了监督和无监督的DVClub模型的统一目标。然后,我们在无监督的设置中利用DVClub模型,然后将其与最先进的生成模型(例如变异自动编码器(VAE),生成对抗网络(GAN)以及Wasserstein Gan(WGAN)连接起来,Wasserstein自动编码器(WAE)和对抗性自动编码器(AAE)通过最佳运输(OT)问题模型。然后,我们证明DVCLUB模型也可以用于公平表示学习问题,其目标是在机器学习模型的训练阶段减轻不希望的偏差。我们对彩色命名和Celeba数据集进行了广泛的定量实验,并提供了公共实施,以评估和分析俱乐部模型。
translated by 谷歌翻译
速率 - 失真(R-D)函数,信息理论中的关键数量,其特征在于,通过任何压缩算法,通过任何压缩算法将数据源可以压缩到保真标准的基本限制。随着研究人员推动了不断提高的压缩性能,建立给定数据源的R-D功能不仅具有科学的兴趣,而且还在可能的空间上揭示了改善压缩算法的可能性。以前的解决此问题依赖于数据源上的分布假设(Gibson,2017)或仅应用于离散数据。相比之下,本文使得第一次尝试播放常规(不一定是离散的)源仅需要i.i.d的算法的算法。数据样本。我们估计高斯和高尺寸香蕉形源的R-D三明治界,以及GaN生成的图像。我们在自然图像上的R-D上限表示在各种比特率的PSNR中提高最先进的图像压缩方法的性能的空间。
translated by 谷歌翻译
This work investigates unsupervised learning of representations by maximizing mutual information between an input and the output of a deep neural network encoder. Importantly, we show that structure matters: incorporating knowledge about locality in the input into the objective can significantly improve a representation's suitability for downstream tasks. We further control characteristics of the representation by matching to a prior distribution adversarially. Our method, which we call Deep InfoMax (DIM), outperforms a number of popular unsupervised learning methods and compares favorably with fully-supervised learning on several classification tasks in with some standard architectures. DIM opens new avenues for unsupervised learning of representations and is an important step towards flexible formulations of representation learning objectives for specific end-goals.
translated by 谷歌翻译
在没有明确或易于处理的可能性的情况下,贝叶斯人经常诉诸于贝叶斯计算(ABC)进行推理。我们的工作基于生成的对抗网络(GAN)和对抗性变分贝叶斯(GAN),为ABC桥接了ABC。 ABC和GAN都比较了观察到的数据和假数据的各个方面,分别从后代和似然模拟。我们开发了一个贝叶斯gan(B-GAN)采样器,该采样器通过解决对抗性优化问题直接靶向后部。 B-GAN是由有条件gan在ABC参考上学习的确定性映射驱动的。一旦训练了映射,就可以通过以可忽略的额外费用过滤噪声来获得IID后样品。我们建议使用(1)数据驱动的提案和(2)变化贝叶斯提出两项后处理的本地改进。我们通过常见的bayesian结果支持我们的发现,表明对于某些神经网络发生器和歧视器,真实和近似后骨之间的典型总变化距离收敛到零。我们对模拟数据的发现相对于一些最新的无可能后验模拟器显示出竞争激烈的性能。
translated by 谷歌翻译
变异推理(VI)的核心原理是将计算复杂后概率密度计算的统计推断问题转换为可拖动的优化问题。该属性使VI比几种基于采样的技术更快。但是,传统的VI算法无法扩展到大型数据集,并且无法轻易推断出越野数据点,而无需重新运行优化过程。该领域的最新发展,例如随机,黑框和摊销VI,已帮助解决了这些问题。如今,生成的建模任务广泛利用摊销VI来实现其效率和可扩展性,因为它利用参数化函数来学习近似的后验密度参数。在本文中,我们回顾了各种VI技术的数学基础,以构成理解摊销VI的基础。此外,我们还概述了最近解决摊销VI问题的趋势,例如摊销差距,泛化问题,不一致的表示学习和后验崩溃。最后,我们分析了改善VI优化的替代差异度量。
translated by 谷歌翻译
近似复杂的概率密度是现代统计中的核心问题。在本文中,我们介绍了变分推理(VI)的概念,这是一种机器学习中的流行方法,该方法使用优化技术来估计复杂的概率密度。此属性允许VI汇聚速度比经典方法更快,例如Markov Chain Monte Carlo采样。概念上,VI通过选择一个概率密度函数,然后找到最接近实际概率密度的家庭 - 通常使用Kullback-Leibler(KL)发散作为优化度量。我们介绍了缩窄的证据,以促进近似的概率密度,我们审查了平均场变分推理背后的想法。最后,我们讨论VI对变分式自动编码器(VAE)和VAE-生成的对抗网络(VAE-GAN)的应用。用本文,我们的目标是解释VI的概念,并通过这种方法协助协助。
translated by 谷歌翻译
基于神经网络驱动的相互信息(MI)界限,在许多机器学习领域取得了显着进展。但是,由于其实际和数学局限性,利用常规MI的损失通常是具有挑战性的。在这项工作中,我们首先确定其不稳定性背后的症状:(1)即使损失似乎收敛后,神经网络也不会融合,并且(2)饱和神经网络输出导致损失分歧。我们通过在现有损失中添加一个新颖的正规化术语来减轻这两个问题。我们从理论上和实验上证明了添加正规化稳定训练。最后,我们提出了一种新颖的基准测试,该基准评估了MI估计功率及其在下游任务上的能力上的基于MI的损失,紧密遵循先前存在的监督和对比度学习环境。我们在多个基准上评估了六个不同的基于MI的损失及其正规化的损失,以表明我们的方法简单而有效。
translated by 谷歌翻译
共同信息(MI)已被广泛用作训练神经网络的损失正规化程序。当学习高维数据的分解或压缩表示时,这特别有效。但是,差异熵(DE)是信息的另一种基本衡量标准,在神经网络培训中尚未发现广泛使用。尽管DE提供了比MI的可能更广泛的应用程序,但现成的DE估计器要么是非可区分的,在计算上是棘手的,要么无法适应基础分布的变化。这些缺点使它们无法在神经网络培训中用作正规化器。为了解决DE先前提出的估计器中的缺点,我们在这里介绍了刀具,这是一个完全参数化的,基于DE的基于核的估计器。我们方法的灵活性还使我们能够为条件(离散变量或连续变量)以及MI构建基于刀的估计器。我们从经验上验证了高维合成数据的方法,并进一步应用它来指导神经网络的现实任务培训。我们对各种任务的实验,包括视觉域的适应性,文本公平分类和文本微调,证明了基于刀的估计的有效性。代码可以在https://github.com/g-pichler/knife上找到。
translated by 谷歌翻译
We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon β-VAE by providing a better trade-off between disentanglement and reconstruction quality. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.
translated by 谷歌翻译
提出了一种新的双峰生成模型,用于生成条件样品和关节样品,并采用学习简洁的瓶颈表示的训练方法。所提出的模型被称为变异Wyner模型,是基于网络信息理论中的两个经典问题(分布式仿真和信道综合)设计的,其中Wyner的共同信息是对公共表示简洁性的基本限制。该模型是通过最大程度地减少对称的kullback的训练 - 差异 - 变异分布和模型分布之间具有正则化项,用于常见信息,重建一致性和潜在空间匹配项,该术语是通过对逆密度比率估计技术进行的。通过与合成和现实世界数据集的联合和有条件生成的实验以及具有挑战性的零照片图像检索任务,证明了所提出的方法的实用性。
translated by 谷歌翻译
Generative adversarial networks (GANs) provide a way to learn deep representations without extensively annotated training data. They achieve this through deriving backpropagation signals through a competitive process involving a pair of networks. The representations that can be learned by GANs may be used in a variety of applications, including image synthesis, semantic image editing, style transfer, image super-resolution and classification. The aim of this review paper is to provide an overview of GANs for the signal processing community, drawing on familiar analogies and concepts where possible. In addition to identifying different methods for training and constructing GANs, we also point to remaining challenges in their theory and application.
translated by 谷歌翻译
Generative neural samplers are probabilistic models that implement sampling using feedforward neural networks: they take a random input vector and produce a sample from a probability distribution defined by the network weights. These models are expressive and allow efficient computation of samples and derivatives, but cannot be used for computing likelihoods or for marginalization. The generativeadversarial training method allows to train such models through the use of an auxiliary discriminative neural network. We show that the generative-adversarial approach is a special case of an existing more general variational divergence estimation approach. We show that any f -divergence can be used for training generative neural samplers. We discuss the benefits of various choices of divergence functions on training complexity and the quality of the obtained generative models.
translated by 谷歌翻译
过度装备数据是与生成模型的众所周知的现象,其模拟太紧密(或准确)的特定数据实例,因此可能无法可靠地预测未来的观察。在实践中,这种行为是由各种 - 有时启发式的 - 正则化技术控制,这是通过将上限发展到泛化误差的激励。在这项工作中,我们研究依赖于在跨熵损失的随机编码上依赖于随机编码的泛化误差,这通常用于深度学习进行分类问题。我们导出界定误差,示出存在根据编码分布随机生成的输入特征和潜在空间中的相应表示之间的相互信息界定的制度。我们的界限提供了对所谓的各种变分类分类中的概括的信息理解,其由Kullback-Leibler(KL)发散项进行规则化。这些结果为变分推理方法提供了高度流行的KL术语的理论理由,这些方法已经认识到作为正则化罚款有效行动。我们进一步观察了具有良好研究概念的连接,例如变形自动化器,信息丢失,信息瓶颈和Boltzmann机器。最后,我们对Mnist和CiFar数据集进行了数值实验,并表明相互信息确实高度代表了泛化误差的行为。
translated by 谷歌翻译
监督表示学习的目标是为预测构建有效的数据表示。在高维复杂数据的理想非参数表示的所有特征中,充分性,低维度和脱离是最重要的。我们提出了一种深层缩小方法,以使用这些特征来学习表示表示。提出的方法是对足够降低方法的非参数概括。我们制定理想的表示学习任务是找到非参数表示,该任务最小化了表征条件独立性并促进人口层面的分离的目标函数。然后,我们使用深层神经网络在非参数上估计样品级别的目标表示。我们表明,估计的深度非参数表示是一致的,因为它的过剩风险会收敛到零。我们使用模拟和真实基准数据的广泛数值实验表明,在分类和回归的背景下,所提出的方法比现有的几种降低方法和标准深度学习模型具有更好的性能。
translated by 谷歌翻译
在没有监督信号的情况下学习简洁的数据表示是机器学习的基本挑战。实现此目标的一种突出方法是基于可能性的模型,例如变异自动编码器(VAE),以基于元元素来学习潜在表示,这是对下游任务有益的一般前提(例如,disentanglement)。但是,这种方法通常偏离原始的可能性体系结构,以应用引入的元优势,从而导致他们的培训不良变化。在本文中,我们提出了一种新颖的表示学习方法,Gromov-Wasserstein自动编码器(GWAE),该方法与潜在和数据分布直接匹配。 GWAE模型不是基于可能性的目标,而是通过最小化Gromov-Wasserstein(GW)度量的训练优化。 GW度量测量了在无与伦比的空间上支持的分布之间的面向结构的差异,例如具有不同的维度。通过限制可训练的先验的家庭,我们可以介绍元主题来控制下游任务的潜在表示。与现有基于VAE的方法的经验比较表明,GWAE模型可以通过更改先前的家族而无需进一步修改GW目标来基于元家庭学习表示。
translated by 谷歌翻译
这是关于生成对抗性网络(GaN),对抗性自身额外的教程和调查纸张及其变体。我们开始解释对抗性学习和香草甘。然后,我们解释了条件GaN和DCGAN。介绍了模式崩溃问题,介绍了各种方法,包括小纤维GaN,展开GaN,Bourgan,混合GaN,D2Gan和Wasserstein GaN,用于解决这个问题。然后,GaN中的最大似然估计与F-GaN,对抗性变分贝叶斯和贝叶斯甘甘相同。然后,我们涵盖了GaN,Infogan,Gran,Lsgan,Enfogan,Gran,Lsgan,Catgan,MMD Gan,Lapgan,Progressive Gan,Triple Gan,Lag,Gman,Adagan,Cogan,逆甘,Bigan,Ali,Sagan,Sagan,Sagan,Sagan,甘肃,甘肃,甘河的插值和评估。然后,我们介绍了GaN的一些应用,例如图像到图像转换(包括Pacchgan,Cyclegan,Deepfacedrawing,模拟GaN,Interactive GaN),文本到图像转换(包括Stackgan)和混合图像特征(包括罚球和mixnmatch)。最后,我们解释了基于对冲学习的AutoEncoders,包括对手AutoEncoder,Pixelgan和隐式AutoEncoder。
translated by 谷歌翻译
最近,已经提出了几种方法,用于使用深神经网络估计来自样本数据的互信息,并且没有知道数据的特写形式分布。这类估算器被称为神经互动信息估计。虽然非常有希望,但是这种技术尚未严格地标记,以便建立它们的功效,易于实现和能力估计的稳定性,这是关节最大化帧工作。在本文中,我们比较文献中提出的不同技术,以估算能力,并提供从业者的效力。特别是,我们研究了相互信息神经估算器(MINE),平滑的互信息下限估计器(微笑)的性能,以及指导信息神经估算器(DINE),并提供对INCONCE的见解。我们在他们学习作为AWGN通道的容量接近的容量接近的输入分布的能力方面评估了这些算法,光学强度信道和峰值功率受限AWGN通道。对于这两种情况,我们对培训过程的各个方面提供了富有洞察力的评论,例如稳定性,初始化的敏感性。
translated by 谷歌翻译
We develop and analyze M -estimation methods for divergence functionals and the likelihood ratios of two probability distributions. Our method is based on a non-asymptotic variational characterization of f -divergences, which allows the problem of estimating divergences to be tackled via convex empirical risk optimization. The resulting estimators are simple to implement, requiring only the solution of standard convex programs. We present an analysis of consistency and convergence for these estimators. Given conditions only on the ratios of densities, we show that our estimators can achieve optimal minimax rates for the likelihood ratio and the divergence functionals in certain regimes. We derive an efficient optimization algorithm for computing our estimates, and illustrate their convergence behavior and practical viability by simulations. 1
translated by 谷歌翻译