图形神经网络(GNN)在各种高桩预测任务中实现了最先进的性能,但是具有不规则结构的图表上的多层聚合使得GNN成为一种更不可解释的模型。先前的方法使用更简单的子图来模拟完整模型,或识别预测原因的完整模型或反事实。这两个方法旨在瞄准两个不同的目标,“模拟性”和“反事实相关”,但目前尚不清楚目标如何共同影响人类理解解释。我们设计用户学习,以调查这些关节效果,并使用该研究结果设计多目标优化(MOO)算法,以查找帕累托最佳解释,可在模拟性和反事实方面得到良好平衡。由于目标模型可以是任何GNN变体,并且由于隐私问题可能无法访问,因此我们使用零顺序信息设计一个搜索算法而不访问目标模型的架构和参数。来自四个应用的九个图表的定量实验表明,帕累托有效的解释主导使用一阶连续优化或离散组合搜索的单目标基线。在鲁棒性和敏感性中进一步评估了解释,以表明他们揭示令人信服的令人信服的能力,同时对可能的混乱持谨慎态度。各种主导的反事件可以证明算法追索权的可行性,这可能促进人类参与使用GNN决策的算法公平性。
translated by 谷歌翻译
Graph Neural Networks (GNNs) are a powerful tool for machine learning on graphs. GNNs combine node feature information with the graph structure by recursively passing neural messages along edges of the input graph. However, incorporating both graph structure and feature information leads to complex models and explaining predictions made by GNNs remains unsolved. Here we propose GNNEXPLAINER, the first general, model-agnostic approach for providing interpretable explanations for predictions of any GNN-based model on any graph-based machine learning task. Given an instance, GNNEXPLAINER identifies a compact subgraph structure and a small subset of node features that have a crucial role in GNN's prediction. Further, GNNEXPLAINER can generate consistent and concise explanations for an entire class of instances. We formulate GNNEXPLAINER as an optimization task that maximizes the mutual information between a GNN's prediction and distribution of possible subgraph structures. Experiments on synthetic and real-world graphs show that our approach can identify important graph structures as well as node features, and outperforms alternative baseline approaches by up to 43.0% in explanation accuracy. GNNEXPLAINER provides a variety of benefits, from the ability to visualize semantically relevant structures to interpretability, to giving insights into errors of faulty GNNs.
translated by 谷歌翻译
图表在许多应用中普遍存在,例如社交网络,知识图形,智能电网等。图形神经网络(GNN)是这些应用的当前最先进的,但对人类来说仍然是模糊的。解释GNN预测可以添加透明度。然而,随着许多图表不是静态而是不断发展,解释了两个图形快照之间的预测的变化是不同的,而同样重要的。现有方法仅解释静态预测或生成用于动态预测的粗略或无关的解释。我们定义解释不断发展的GNN预测的问题,并提出了一种唯一地将预测的改变唯一地分解到计算图中的路径。涉及高度节点的许多路径的归属仍然不可解释,同时简单地选择顶部的重要路径可以是近似变化的次优。我们制定了一种新颖的凸优化问题,以最佳地选择解释预测演化的路径。从理论上讲,我们证明了基于层相关性 - 传播(LRP)的现有方法是当与空图进行比较时所提出的算法的特殊情况。经验上,在七个图形数据集上,具有用于评估预测变化的解释的新型度量,我们展示了所提出的方法对现有方法的优越性,包括LRP,DEEPLIFT和其他路径选择方法。
translated by 谷歌翻译
深度学习方法正在实现许多人工智能任务上的不断增长。深层模型的一个主要局限性是它们不适合可解释性。可以通过开发事后技术来解释预测,从而产生解释性领域,从而规避这种限制。最近,关于图像和文本的深层模型的解释性取得了重大进展。在图数据的领域,图形神经网络(GNN)及其解释性正在迅速发展。但是,既没有对GNN解释性方法的统一处理,也没有标准的基准和测试床。在这项调查中,我们提供了当前GNN解释性方法的统一和分类观点。我们对这一主题的统一和分类治疗对现有方法的共同性和差异阐明了灯光,并为进一步的方法论发展奠定了基础。为了促进评估,我们生成了一组专门用于GNN解释性的基准图数据集。我们总结了当前的数据集和指标,以评估GNN的解释性。总的来说,这项工作提供了GNN解释性和评估标准化测试床的统一方法论。
translated by 谷歌翻译
Explaining machine learning models is an important and increasingly popular area of research interest. The Shapley value from game theory has been proposed as a prime approach to compute feature importance towards model predictions on images, text, tabular data, and recently graph neural networks (GNNs) on graphs. In this work, we revisit the appropriateness of the Shapley value for GNN explanation, where the task is to identify the most important subgraph and constituent nodes for GNN predictions. We claim that the Shapley value is a non-ideal choice for graph data because it is by definition not structure-aware. We propose a Graph Structure-aware eXplanation (GStarX) method to leverage the critical graph structure information to improve the explanation. Specifically, we define a scoring function based on a new structure-aware value from the cooperative game theory proposed by Hamiache and Navarro (HN). When used to score node importance, the HN value utilizes graph structures to attribute cooperation surplus between neighbor nodes, resembling message passing in GNNs, so that node importance scores reflect not only the node feature importance, but also the node structural roles. We demonstrate that GStarX produces qualitatively more intuitive explanations, and quantitatively improves explanation fidelity over strong baselines on chemical graph property prediction and text graph sentiment classification.
translated by 谷歌翻译
最近,图形神经网络(GNN)已被广泛用于开发成功的推荐系统。尽管功能强大,但基于GNN的建议系统很难附上明显的解释,说明为什么特定项目最终在给定用户的建议列表中。确实,解释基于GNN的建议是独特的,而现有的GNN解释方法是不合适的,原因有两个。首先,传统的GNN解释方法是为节点,边缘或图形分类任务而不是排名而设计的,如推荐系统中。其次,标准的机器学习解释通常旨在支持熟练的决策者。相反,建议是为任何最终用户设计的,因此应以用户理解的方式提供其解释。在这项工作中,我们提出了润滑脂,这是一种新的方法,用于解释任何基于黑盒GNN的建议系统提供的建议。具体而言,Grease首先在目标用户项目对及其$ L $ -HOP社区上训练替代模型。然后,它通过找到最佳的邻接矩阵扰动来捕获足够和必要的条件,分别推荐一个项目,从而生成事实和反事实解释。在现实世界数据集上进行的实验结果表明,油脂可以为流行的基于GNN的推荐模型产生简洁有效的解释。
translated by 谷歌翻译
在高措施应用中大量部署图神经网络(GNNS)对对噪声的强大解释产生了强烈的需求,这些解释与人类的直觉很好。大多数现有方法通过识别与预测有很强相关性的输入图的子图来生成解释。这些解释对噪声并不强大,因为独立优化单个输入的相关性很容易过分拟合噪声。此外,它们与人类直觉并不十分吻合,因为从输入图中删除已识别的子图并不一定会改变预测结果。在本文中,我们提出了一种新颖的方法,可以通过在类似的输入图上明确建模GNNS的共同决策逻辑来生成对GNN的强大反事实解释。我们的解释自然对噪声是强大的,因为它们是由控制许多类似输入图的GNN的共同决策边界产生的。该解释也与人类的直觉很好地吻合,因为从输入图中的解释中删除了一组边缘,从而显着改变了预测。许多公共数据集上的详尽实验证明了我们方法的出色性能。
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
作为当今最受欢迎的机器学习模型之一,Graph神经网络(GNN)最近引起了激烈的兴趣,其解释性也引起了人们的兴趣。用户对更好地了解GNN模型及其结果越来越感兴趣。不幸的是,当今的GNN评估框架通常依赖于合成数据集,从而得出有限范围的结论,因为问题实例缺乏复杂性。由于GNN模型被部署到更关键的任务应用程序中,因此我们迫切需要使用GNN解释性方法的共同评估协议。在本文中,据我们最大的知识,我们提出了针对GNN解释性的第一个系统评估框架,考虑了三种不同的“用户需求”的解释性:解释焦点,掩盖性质和掩蔽转换。我们提出了一个独特的指标,该指标将忠诚度措施结合在一起,并根据其足够或必要的质量对解释进行分类。我们将自己范围用于节点分类任务,并比较GNN的输入级解释性领域中最具代表性的技术。对于广泛使用的合成基准测试,令人惊讶的是,诸如个性化Pagerank之类的浅水技术在最小计算时间内具有最佳性能。但是,当图形结构更加复杂并且节点具有有意义的特征时,根据我们的评估标准,基于梯度的方法,尤其是显着性。但是,没有人在所有评估维度上占主导地位,而且总会有一个权衡。我们在eBay图上的案例研究中进一步应用了我们的评估协议,以反映生产环境。
translated by 谷歌翻译
我们研究了图神经网络(GNN)的解释性,作为阐明其工作机制的一步。尽管大多数当前方法都集中在解释图节点,边缘或功能上,但我们认为,作为GNNS的固有功能机制,消息流对执行解释性更为自然。为此,我们在这里提出了一种新颖的方法,即FlowX,以通过识别重要的消息流来解释GNN。为了量化流量的重要性,我们建议遵循合作游戏理论中沙普利价值观的哲学。为了解决计算所有联盟边际贡献的复杂性,我们提出了一个近似方案,以计算类似沙普利的值,作为进一步再分配训练的初步评估。然后,我们提出一种学习算法来训练流量评分并提高解释性。关于合成和现实世界数据集的实验研究表明,我们提出的FlowX导致GNN的解释性提高。
translated by 谷歌翻译
解释机器学习决策的问题是经过深入研究和重要的。我们对一种涉及称为图形神经网络的图形数据的特定类型的机器学习模型感兴趣。众所周知,由于缺乏公认的基准,评估图形神经网络(GNN)的可解释性方法是具有挑战性的。鉴于GNN模型,存在几种可解释性方法来解释具有多种(有时相互矛盾的)方法论的GNN模型。在本文中,我们提出了一个基准,用于评估称为Bagel的GNN的解释性方法。在百吉饼中,我们首先提出了四种不同的GNN解释评估制度 - 1)忠诚,2)稀疏性,3)正确性。 4)合理性。我们在现有文献中调和多个评估指标,并涵盖了各种概念以进行整体评估。我们的图数据集范围从引文网络,文档图,到分子和蛋白质的图。我们对四个GNN模型和九个有关节点和图形分类任务的事后解释方法进行了广泛的实证研究。我们打开基准和参考实现,并在https://github.com/mandeep-rathee/bagel-benchmark上提供它们。
translated by 谷歌翻译
In this paper, we investigate the degree of explainability of graph neural networks (GNNs). Existing explainers work by finding global/local subgraphs to explain a prediction, but they are applied after a GNN has already been trained. Here, we propose a meta-learning framework for improving the level of explainability of a GNN directly at training time, by steering the optimization procedure towards what we call `interpretable minima'. Our framework (called MATE, MetA-Train to Explain) jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms that explain the model's decisions in a human-friendly way. In particular, we meta-train the model's parameters to quickly minimize the error of an instance-level GNNExplainer trained on-the-fly on randomly sampled nodes. The final internal representation relies upon a set of features that can be `better' understood by an explanation algorithm, e.g., another instance of GNNExplainer. Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process. Experiments on synthetic and real-world datasets for node and graph classification show that we can produce models that are consistently easier to explain by different algorithms. Furthermore, this increase in explainability comes at no cost for the accuracy of the model.
translated by 谷歌翻译
Explainability of Graph Neural Networks (GNNs) is critical to various GNN applications but remains an open challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, necessity or sufficiency, or a trade-off between the two. To search for the most necessary and sufficient explanation, the Probability of Necessity and Sufficiency (PNS) can be applied since it can mathematically quantify the necessity and sufficiency of an explanation. Nevertheless, the difficulty of obtaining PNS due to non-monotonicity and the challenge of counterfactual estimation limits its wide use. To address the non-identifiability of PNS, we resort to a lower bound of PNS that can be optimized via counterfactual estimation, and propose Necessary and Sufficient Explanation for GNN (NSEG) via optimizing that lower bound. Specifically, we employ nearest neighbor matching to generate counterfactual samples for the features, which is different from the random perturbation. In particular, NSEG combines the edges and node features to generate an explanation, where the common edge explanation is a special case of the combined explanation. Empirical study shows that NSEG achieves excellent performance in generating the most necessary and sufficient explanations among a series of state-of-the-art methods.
translated by 谷歌翻译
图神经网络(GNN)是一类流行的机器学习模型。受到学习解释(L2X)范式的启发,我们提出了L2XGNN,这是一个可解释的GNN的框架,该框架通过设计提供了忠实的解释。L2XGNN学习了一种选择解释性子图(主题)的机制,该机制仅在GNNS消息通话操作中使用。L2XGNN能够为每个输入图选择具有特定属性的子图,例如稀疏和连接。对主题施加这种限制通常会导致更容易解释和有效的解释。几个数据集的实验表明,L2XGNN使用整个输入图实现了与基线方法相同的分类精度,同时确保仅使用提供的解释来进行预测。此外,我们表明L2XGNN能够识别负责预测图形属性的主题。
translated by 谷歌翻译
消息传递已作为设计图形神经网络(GNN)的有效工具的发展。但是,消息传递的大多数现有方法简单地简单或平均所有相邻的功能更新节点表示。它们受到两个问题的限制,即(i)缺乏可解释性来识别对GNN的预测重要的节点特征,以及(ii)特征过度混合,导致捕获长期依赖和无能为力的过度平滑问题在异质或低同质的下方处理图。在本文中,我们提出了一个节点级胶囊图神经网络(NCGNN),以通过改进的消息传递方案来解决这些问题。具体而言,NCGNN表示节点为节点级胶囊组,其中每个胶囊都提取其相应节点的独特特征。对于每个节点级胶囊,开发了一个新颖的动态路由过程,以适应适当的胶囊,以从设计的图形滤波器确定的子图中聚集。 NCGNN聚集仅有利的胶囊并限制无关的消息,以避免交互节点的过度混合特征。因此,它可以缓解过度平滑的问题,并通过同粒或异质的图表学习有效的节点表示。此外,我们提出的消息传递方案本质上是可解释的,并免于复杂的事后解释,因为图形过滤器和动态路由过程确定了节点特征的子集,这对于从提取的子分类中的模型预测最为重要。关于合成和现实图形的广泛实验表明,NCGNN可以很好地解决过度光滑的问题,并为半监视的节点分类产生更好的节点表示。它的表现优于同质和异质的艺术状态。
translated by 谷歌翻译
Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, like nodes or edges, that the target GNN relies upon for making predictions. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and fail to provide consistent explanations. Applying them to explain weakly-performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons of spurious explanations are identified: confounding effect of latent variables like distribution shift, and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations, we propose a simple yet effective countermeasure by aligning embeddings. Concretely, concerning potential shifts in the high-dimensional space, we design a distribution-aware alignment algorithm based on anchors. This new objective is easy to compute and can be incorporated into existing techniques with no or little effort. Theoretical analysis shows that it is in effect optimizing a more faithful explanation objective in design, which further justifies the proposed approach.
translated by 谷歌翻译
Graph neural networks (GNNs) find applications in various domains such as computational biology, natural language processing, and computer security. Owing to their popularity, there is an increasing need to explain GNN predictions since GNNs are black-box machine learning models. One way to address this is counterfactual reasoning where the objective is to change the GNN prediction by minimal changes in the input graph. Existing methods for counterfactual explanation of GNNs are limited to instance-specific local reasoning. This approach has two major limitations of not being able to offer global recourse policies and overloading human cognitive ability with too much information. In this work, we study the global explainability of GNNs through global counterfactual reasoning. Specifically, we want to find a small set of representative counterfactual graphs that explains all input graphs. Towards this goal, we propose GCFExplainer, a novel algorithm powered by vertex-reinforced random walks on an edit map of graphs with a greedy summary. Extensive experiments on real graph datasets show that the global explanation from GCFExplainer provides important high-level insights of the model behavior and achieves a 46.9% gain in recourse coverage and a 9.5% reduction in recourse cost compared to the state-of-the-art local counterfactual explainers.
translated by 谷歌翻译
由于事后解释越来越多地用于了解图神经网络(GNN)的行为,因此评估GNN解释的质量和可靠性至关重要。但是,评估GNN解释的质量是具有挑战性的,因为现有的图形数据集对给定任务没有或不可靠的基础真相解释。在这里,我们介绍了一个合成图数据生成器ShapeGgen,该生成可以生成各种基准数据集(例如,不同的图形大小,度分布,同粒细胞与异性图)以及伴随着地面真相解释。此外,生成各种合成数据集和相应的基础真相解释的灵活性使我们能够模仿各种现实世界应用程序生成的数据。我们将ShapeGgen和几个现实图形数据集包括在开源图形图库GraphXai中。除了带有基础真相说明的合成和现实图形数据集外,GraphXAI还提供数据加载程序,数据处理功能,可视化器,GNN模型实现和评估指标,以基准基准GNN解释性方法的性能。
translated by 谷歌翻译
解释是关于解释者与解释者之间现象的人类知识转移过程。解释者必须根据当前的解释现象相关的知识水平和现象本身仔细选择来解释这种现象的每个单词,以便从现象的说明中有很高的了解。如今,Deep Models,尤其是图形神经网络,即使在关键应用中也在日常生活中占有重要地位。在这种情况下,这些模型还需要具有人类的高解释性,也称为可以解释,以提高敏感情况下它们的使用可信度。解释也是人类依赖的任务和解释深层模型行为的方法,必须包括这些与社会相关的问题,以提供有利可图的质量解释。当前的解释方法通常会阻塞这种社会方面,以提供其解释,仅关注问题的信号方面。在这项贡献中,我们提出了一种适合图形神经网络的可靠的社交意识解释方法,该方法将这种社会功能作为模块化概念生成器,并通过利用信号和图形域方面,这要归功于特征性概念订购方法。除了我们的方法考虑了任何解释过程的基础人类依赖性方面外,我们还在评估图形神经网络模型的解释方法的最新目标指标方面还达到了很高的分数。
translated by 谷歌翻译
图形神经网络(GNN)表现出令人满意的各种图分析问题的性能。因此,在各种决策方案中,它们已成为\ emph {de exto}解决方案。但是,GNN可以针对某些人口亚组产生偏差的结果。最近的一些作品在经验上表明,输入网络的偏见结构是GNN的重要来源。然而,没有系统仔细检查输入网络结构的哪一部分会导致对任何给定节点的偏见预测。对输入网络的结构如何影响GNN结果的偏见的透明度很大,在很大程度上限制了在各种决策方案中的安全采用GNN。在本文中,我们研究了GNN中偏见的结构解释的新研究问题。具体而言,我们提出了一个新颖的事后解释框架,以识别可以最大程度地解释出偏见的两个边缘集,并最大程度地促进任何给定节点的GNN预测的公平水平。这种解释不仅提供了对GNN预测的偏见/公平性的全面理解,而且在建立有效但公平的GNN模型方面具有实际意义。对现实世界数据集的广泛实验验证了拟议框架在为GNN偏见提供有效的结构解释方面的有效性。可以在https://github.com/yushundong/referee上找到开源代码。
translated by 谷歌翻译