为了促进医学图像分割技术的开发,提供了用于多功能医疗图像分割的大型腹部多器官数据集Amos,并通过使用数据集来构成AMOS 2022挑战。在本报告中,我们介绍了AMOS 2022挑战的解决方案。我们采用具有深远视觉的剩余U-NET作为我们的基本模型。实验结果表明,对于仅CT任务和CT/MRI任务,骰子相似系数和归一化表面骰子的平均得分分别为0.8504和0.8476。
translated by 谷歌翻译
自动化的腹部多器官分割是计算机辅助诊断腹部器官相关疾病的至关重要但具有挑战性的任务。尽管许多深度学习模型在许多医学图像分割任务中取得了显着的成功,但由于腹部器官的不同大小以及它们之间的含糊界限,腹部器官的准确分割仍然具有挑战性。在本文中,我们提出了一个边界感知网络(BA-NET),以分段CT扫描和MRI扫描进行腹部器官。该模型包含共享编码器,边界解码器和分割解码器。两个解码器都采用了多尺度的深度监督策略,这可以减轻可变器官尺寸引起的问题。边界解码器在每个量表上产生的边界概率图被用作提高分割特征图的注意。我们评估了腹部多器官细分(AMOS)挑战数据集的BA-NET,并获得了CT扫描的多器官分割的平均骰子分数为89.29 $ \%$,平均骰子得分为71.92 $ \%$ \%$ \% MRI扫描。结果表明,在两个分割任务上,BA-NET优于NNUNET。
translated by 谷歌翻译
无监督的域适应性(UDA)是解决一个问题的关键技术之一,很难获得监督学习所需的地面真相标签。通常,UDA假设在培训过程中可以使用来自源和目标域中的所有样本。但是,在涉及数据隐私问题的应用下,这不是现实的假设。为了克服这一限制,最近提出了无源数据的UDA,即无源无监督的域适应性(SFUDA)。在这里,我们提出了一种用于医疗图像分割的SFUDA方法。除了在UDA中通常使用的熵最小化方法外,我们还引入了一个损失函数,以避免目标域中的特征规范和在保留目标器官的形状约束之前。我们使用数据集进行实验,包括多种类型的源目标域组合,以显示我们方法的多功能性和鲁棒性。我们确认我们的方法优于所有数据集中的最先进。
translated by 谷歌翻译
我们实施了两个不同的三维深度学习神经网络,并评估了它们在非对比度计算机断层扫描(CT)上看到的颅内出血(ICH)的能力。一种模型,称为“沿正交关注u-net沿正交级别的素隔离”(Viola-Unet),其体系结构元素可适应2022年实例的数据挑战。第二个比较模型是从No-New U-NET(NNU-NET)得出的。输入图像和地面真理分割图用于以监督方式分别训练两个网络。验证数据随后用于半监督培训。在5倍交叉验证期间比较了模型预测。中提琴 - UNET的表现优于四个性能指标中的两个(即NSD和RVD)的比较网络。将中提琴和NNU-NET网络组合的合奏模型在DSC和HD方面的性能最高。我们证明,与3D U-NET相关的ICH分割性能优势有效地合并了U-NET的解码分支期间的空间正交特征。 Viola-Unet AI工具的代码基础,预估计的权重和Docker图像将在https://github.com/samleoqh/viola-unet上公开获得。
translated by 谷歌翻译
在医学图像中,准确,自动和完整的肺气道中的肺气道在分析胸部CT体积(例如肺癌检测,慢性阻塞性肺疾病(COPD)和支气管镜辅助手术导航)中起着重要作用。但是,由于气道的复杂树状结构,此任务仍然是挑战。在这份技术报告中,我们使用两阶段的完全卷积网络(FCN)自动从多站点进行胸腔CT扫描中的肺气道。具体而言,我们首先采用带有U形网络架构的3D FCN以粗分辨率分割肺气道,以加速医学图像分析管道。然后,另一个3D FCN进行了训练,可以以精细的分辨率分段肺气道。在2022 MICCAI多站点多域气道树建模(ATM)挑战中,对报告的方法进行了300例公共培训集和50个案例的独立私人验证集评估。最终的骰子相似性系数(DSC)为0.914 $ \ pm $ 0.040,假负错误(FNE)为0.079 $ \ pm $ 0.042,误差(FPE)为0.090 $ \ pm $ \ pm $ 0.066独立私人验证集。
translated by 谷歌翻译
Automatic segmentation of kidney and kidney tumour in Computed Tomography (CT) images is essential, as it uses less time as compared to the current gold standard of manual segmentation. However, many hospitals are still reliant on manual study and segmentation of CT images by medical practitioners because of its higher accuracy. Thus, this study focuses on the development of an approach for automatic kidney and kidney tumour segmentation in contrast-enhanced CT images. A method based on Convolutional Neural Network (CNN) was proposed, where a 3D U-Net segmentation model was developed and trained to delineate the kidney and kidney tumour from CT scans. Each CT image was pre-processed before inputting to the CNN, and the effect of down-sampled and patch-wise input images on the model performance was analysed. The proposed method was evaluated on the publicly available 2021 Kidney and Kidney Tumour Segmentation Challenge (KiTS21) dataset. The method with the best performing model recorded an average training Dice score of 0.6129, with the kidney and kidney tumour Dice scores of 0.7923 and 0.4344, respectively. For testing, the model obtained a kidney Dice score of 0.8034, and a kidney tumour Dice score of 0.4713, with an average Dice score of 0.6374.
translated by 谷歌翻译
我们为Brats21挑战中的脑肿瘤分割任务提出了优化的U-Net架构。为了找到最佳模型架构和学习时间表,我们运行了一个广泛的消融研究来测试:深度监督损失,焦点,解码器注意,下降块和残余连接。此外,我们搜索了U-Net编码器的最佳深度,卷积通道数量和后处理策略。我们的方法赢得了验证阶段,并在测试阶段进行了第三位。我们已开放源代码以在NVIDIA深度学习示例GitHub存储库中重现我们的Brats21提交。
translated by 谷歌翻译
视觉变形金刚(VIT)S表现出可观的全球和本地陈述的自我监督学习表现,可以转移到下游应用程序。灵感来自这些结果,我们介绍了一种新的自我监督学习框架,具有用于医学图像分析的定制代理任务。具体而言,我们提出:(i)以新的3D变压器为基础的型号,被称为往返变压器(Swin Unet),具有分层编码器,用于自我监督的预训练; (ii)用于学习人类解剖学潜在模式的定制代理任务。我们展示了来自各种身体器官的5,050个公共可用的计算机断层扫描(CT)图像的提出模型的成功预培训。通过微调超出颅穹窿(BTCV)分割挑战的预先调整训练模型和来自医疗细分牌组(MSD)数据集的分割任务,通过微调训练有素的模型来验证我们的方法的有效性。我们的模型目前是MSD和BTCV数据集的公共测试排行榜上的最先进的(即第1号)。代码:https://monai.io/research/swin-unetr.
translated by 谷歌翻译
在这项工作中,我们介绍了我们提出的方法,该方法是使用SWIN UNETR和基于U-NET的深神经网络体系结构从CT扫描中分割肺动脉的方法。六个型号,基于SWIN UNETR的三个型号以及基于3D U-NET的三个模型,使用加权平均值来制作最终的分割掩码。我们的团队通过这种方法获得了84.36%的多级骰子得分。我们的工作代码可在以下链接上提供:https://github.com/akansh12/parse2022。这项工作是Miccai Parse 2022挑战的一部分。
translated by 谷歌翻译
Convolutional Neural Networks (CNNs) have been recently employed to solve problems from both the computer vision and medical image analysis fields. Despite their popularity, most approaches are only able to process 2D images while most medical data used in clinical practice consists of 3D volumes. In this work we propose an approach to 3D image segmentation based on a volumetric, fully convolutional, neural network. Our CNN is trained end-to-end on MRI volumes depicting prostate, and learns to predict segmentation for the whole volume at once. We introduce a novel objective function, that we optimise during training, based on Dice coefficient. In this way we can deal with situations where there is a strong imbalance between the number of foreground and background voxels. To cope with the limited number of annotated volumes available for training, we augment the data applying random non-linear transformations and histogram matching. We show in our experimental evaluation that our approach achieves good performances on challenging test data while requiring only a fraction of the processing time needed by other previous methods.
translated by 谷歌翻译
3D牙齿分割是计算机辅助牙齿诊断和治疗的先决条件。但是,将所有牙齿区域分割为主观且耗时。最近,基于深度学习的细分方法产生了令人信服的结果并减少了手动注释的工作,但是它需要大量的基础真相进行培训。据我们所知,3D分割研究几乎没有牙齿数据。在本文中,我们建立了带有牙齿金标准的完全注释的锥束计算机断层扫描数据集。该数据集包含22卷(7363片),并带有经验丰富的射线照相解释者注释的精细牙齿标签。为了确保相对的数据采样分布,数据方差包括在牙齿中,包括缺失的牙齿和牙齿修复。在此数据集上评估了几种最新的分割方法。之后,我们进一步总结并应用了一系列基于3D注意的UNET变体以分割牙齿。这项工作为牙齿体积分割任务提供了新的基准。实验证据证明,3D UNET结构的注意力模块增强了牙齿区域中的反应,并抑制背景和噪声的影响。 3D UNET使用SKNET注意模块实现了最佳性能,分别为88.04 \%骰子和78.71 \%IOU。基于注意力的UNET框架的表现优于Ctooth数据集上的其他最新方法。代码库和数据集已发布。
translated by 谷歌翻译
来自多个磁共振成像(MRI)方式的脑肿瘤分割是医学图像计算中的具有挑战性的任务。主要挑战在于各种扫描仪和成像协议的普遍性。在本文中,我们探讨了在不增加推理时间的情况下增加模型稳健性的策略。为此目的,我们探索使用不同损失,优化仪和培训验证数据拆分培训的型号的强大合奏。重要的是,我们探讨了U-Net架构的瓶颈中的变压器。虽然我们在瓶颈中发现变压器比平均基线U-Net更差,但是广义的Wasserstein骰子损失一致地产生优异的结果。此外,我们采用了高效的测试时间增强策略,以实现更快和强大的推论。我们的最终集合具有测试时间增强的七个3D U-Nets的平均骰子得分为89.4%,平均HAUSDORFF 95%距离10.0 mm在Brats 2021测试数据集时。我们的代码和培训的型号在https://github.com/lucasfidon/trabit_brats2021上公开提供。
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively. The docker image for the winning submission is publicly available at (https://hub.docker.com/r/razeineldin/camed22).
translated by 谷歌翻译
医学成像的病变分割是临床研究中的一个重要课题。研究人员提出了各种检测和分段算法来解决这项任务。最近,基于深度学习的方法显着提高了传统方法的性能。然而,大多数最先进的深度学习方法需要手动设计多个网络组件和培训策略。在本文中,我们提出了一种新的自动化机器学习算法T-Automl,不仅搜索最佳神经结构,而且还可以同时找到超参数和数据增强策略的最佳组合。该方法采用现代变压器模型,引入了适应搜索空间嵌入的动态长度,并且可以显着提高搜索能力。我们在几个大型公共病变分割数据集上验证T-Automl并实现最先进的性能。
translated by 谷歌翻译
语义分割是医学图像计算中最受欢迎的研究领域之一。也许令人惊讶的是,尽管它可以追溯到2018年,但NNU-NET仍在为各种细分问题提供竞争性的开箱即用解决方案,并定期用作挑战挑战算法的开发框架。在这里,我们使用NNU-NET参与AMOS2022挑战,该挑战带有一套独特的任务:数据集不仅是有史以来最大的最大的数据集,而且拥有15个目标结构,而且竞争还需要提交的解决方案来处理这两种MRI和CT扫描。通过仔细修改NNU-NET的超参数,在编码器中添加剩余连接以及设计自定义后处理策略,我们能够实质上改进NNU-NET基线。我们的最终合奏在任务1(CT)的骰子得分为90.13,而任务2(CT+MRI)的骰子得分为89.06,在提供的培训案例中进行了5倍的交叉验证。
translated by 谷歌翻译
本文提出了来自Covid-19患者CT体积的肺部感染区的分段方法。 Covid-19在全球范围内传播,造成许多受感染的患者和死亡。 CT图像的Covid-19诊断可以提供快速准确的诊断结果。肺中感染区的自动分割方法提供了诊断的定量标准。以前的方法采用整个2D图像或基于3D卷的过程。感染区域的尺寸具有相当大的变化。这种过程容易错过小型感染区域。基于补丁的过程对于分割小目标是有效的。然而,在感染区分割中选择适当的贴片尺寸难以。我们利用分段FCN的各种接受场大小之间的规模不确定性以获得感染区域。接收场尺寸可以定义为贴片尺寸和块从斑块的卷的分辨率。本文提出了一种执行基于补丁的分割的感染分段网络(ISNet)和尺度的不确定性感知预测聚合方法,其改进分割结果。我们设计ISNET到具有各种强度值的分段感染区域。 ISNet具有多个编码路径来处理由多个强度范围归一化的修补程序卷。我们收集具有各种接收场尺寸的ISNet产生的预测结果。预测聚合方法提取预测结果之间的规模不确定性。我们使用聚合FCN来在预测之间的规模不确定性来生成精确的分段结果。在我们的实验中,使用199例Covid-19案例,预测聚集方法将骰子相似度评分从47.6%提高到62.1%。
translated by 谷歌翻译
背景和目标:现有的医学图像分割的深度学习平台主要集中于完全监督的细分,该分段假设可以使用充分而准确的像素级注释。我们旨在开发一种新的深度学习工具包,以支持对医学图像分割的注释有效学习,该学习可以加速并简单地开发具有有限注释预算的深度学习模型,例如,从部分,稀疏或嘈杂的注释中学习。方法:我们提出的名为Pymic的工具包是用于医学图像分割任务的模块化深度学习平台。除了支持开发高性能模型以进行全面监督分割的基本组件外,它还包含几个高级组件,这些高级组件是针对从不完善的注释中学习的几个高级组件,例如加载带注释和未经通知的图像,未经通知的,部分或无效的注释图像的损失功能,以及多个网络之间共同学习的培训程序。Pymic构建了Pytorch框架,并支持半监督,弱监督和噪声的学习方法用于医学图像分割。结果:我们介绍了基于PYMIC的四个说明性医学图像细分任务:(1)在完全监督的学习上实现竞争性能; (2)半监督心脏结构分割,只有10%的训练图像; (3)使用涂鸦注释弱监督的分割; (4)从嘈杂的标签中学习以进行胸部X光片分割。结论:Pymic工具包易于使用,并促进具有不完美注释的医学图像分割模型的有效开发。它是模块化和灵活的,它使研究人员能够开发出低注释成本的高性能模型。源代码可在以下网址获得:https://github.com/hilab-git/pymic。
translated by 谷歌翻译
Fully Convolutional Neural Networks (FCNNs) with contracting and expanding paths have shown prominence for the majority of medical image segmentation applications since the past decade. In FCNNs, the encoder plays an integral role by learning both global and local features and contextual representations which can be utilized for semantic output prediction by the decoder. Despite their success, the locality of convolutional layers in FCNNs, limits the capability of learning long-range spatial dependencies. Inspired by the recent success of transformers for Natural Language Processing (NLP) in long-range sequence learning, we reformulate the task of volumetric (3D) medical image segmentation as a sequence-to-sequence prediction problem. We introduce a novel architecture, dubbed as UNEt TRansformers (UNETR), that utilizes a transformer as the encoder to learn sequence representations of the input volume and effectively capture the global multi-scale information, while also following the successful "U-shaped" network design for the encoder and decoder. The transformer encoder is directly connected to a decoder via skip connections at different resolutions to compute the final semantic segmentation output. We have validated the performance of our method on the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) dataset for multiorgan segmentation and the Medical Segmentation Decathlon (MSD) dataset for brain tumor and spleen segmentation tasks. Our benchmarks demonstrate new state-of-the-art performance on the BTCV leaderboard. Code: https://monai.io/research/unetr
translated by 谷歌翻译