医学图像通常表现出多种异常。预测它们需要多级分类器,其培训和期望的可靠性性能可能受到因素的组合而影响,例如数据集大小,数据源,分布以及用于训练深度神经网络的损耗功能。目前,跨熵损失仍然是培训深层学习分类器的脱磁场损失功能。然而,这种损失函数断言所有课程的平等学习,导致大多数类的偏见。在这项工作中,我们基准测试适用于多级分类,重点分析模型性能的各种最先进的损失功能,并提出改善的损失功能。我们选择一个小儿胸部X射线(CXR)数据集,其包括没有异常(正常)的图像,以及表现出与细菌和病毒性肺炎一致的表现形式的图像。我们分别构建预测级别和模型级集合,以提高分类性能。我们的结果表明,与个别模型和最先进的文献相比,前3名和前5个模型级集合的预测的加权平均在术语中提供了显着优越的分类性能(P <0.05) MCC(0.9068,95%置信区间(0.8839,0.9297))指标。最后,我们进行了本地化研究,以解释模型行为,以便可视化和确认个人模型和集合学习有意义的特征和突出显示的疾病表现。
translated by 谷歌翻译
胸部X射线(CXR)是一种广泛执行的放射学检查,有助于检测胸腔中组织和器官的异常。检测像Covid-19这样的肺异常可能变得困难,因为它们被像肋和锁骨一样的骨结构的存在模糊,从而导致筛选/诊断误解。自动骨抑制方法有助于抑制这些骨结构并提高软组织可见性。在本研究中,我们建议建立卷积神经网络模型的集合,以抑制正面CXR中的骨骼,提高分类性能,并减少与Covid-19检测相关的解释误差。该合奏由(i)构造(i)测量由前3个执行骨抑制模型和相应子的每个前3个预测的骨抑制图像的子块之间的多尺度结构相似性指数(MS-SSIM)得分 - 其各自的地面真相软组织图像,(ii)执行在每个子块中计算的MS-SSIM分数的大多数投票,以识别具有最大MS-SSIM分数的子块并在构造中使用它最终的骨抑制图像。我们经验确定了提供卓越的骨抑制性能的子块大小。据观察,骨抑制模型集合在MS-SSIM和其他度量方面表现出各个模型。在非骨抑制和骨抑制的图像上再培训和评估特异性特异性分类模型,以将它们分类为显示正常肺部或其他Covid-19类似的表现形式。我们观察到骨抑制的模型训练显着优于非骨抑制图像训练的模型朝着检测Covid-19表现形式。
translated by 谷歌翻译
使用深度学习方法(DL)方法的结核病(TB)自动分割(TB) - 一致的病变(CXR)可以帮助减少放射科医生的努力,补充临床决策,并有可能改善患者治疗。文献中的大多数作品使用粗边界框注释讨论培训自动分割模型。但是,边界框注释的粒度可能导致在像素级别上包含相当一部分假阳性和负面因素,从而可能对整体语义分割性能产生不利影响。这项研究(i)评估了使用TB一致性病变的细粒注释和(ii)U-NET模型变体的培训和构造的好处CXR。我们使用多种集合方法(例如位和位或位,位 - 最大值和堆叠)评估了分割性能。我们观察到,与单个组成模型和其他集合方法相比,堆叠合奏表现出优异的分割性能(骰子得分:0.5743,95%置信区间:(0.4055,0.7431))。据我们所知,这是第一个应用合奏学习来改善细粒度元素一致性病变细分性能的研究。
translated by 谷歌翻译
Lung segmentation in chest X-rays (CXRs) is an important prerequisite for improving the specificity of diagnoses of cardiopulmonary diseases in a clinical decision support system. Current deep learning (DL) models for lung segmentation are trained and evaluated on CXR datasets in which the radiographic projections are captured predominantly from the adult population. However, the shape of the lungs is reported to be significantly different for pediatrics across the developmental stages from infancy to adulthood. This might result in age-related data domain shifts that would adversely impact lung segmentation performance when the models trained on the adult population are deployed for pediatric lung segmentation. In this work, our goal is to analyze the generalizability of deep adult lung segmentation models to the pediatric population and improve performance through a systematic combinatorial approach consisting of CXR modality-specific weight initializations, stacked generalization, and an ensemble of the stacked generalization models. Novel evaluation metrics consisting of Mean Lung Contour Distance and Average Hash Score are proposed in addition to the Multi-scale Structural Similarity Index Measure, Intersection of Union, and Dice metrics to evaluate segmentation performance. We observed a significant improvement (p < 0.05) in cross-domain generalization through our combinatorial approach. This study could serve as a paradigm to analyze the cross-domain generalizability of deep segmentation models for other medical imaging modalities and applications.
translated by 谷歌翻译
现代深层神经网络在医学图像分割任务中取得了显着进展。然而,最近观察到他们倾向于产生过于自信的估计,即使在高度不确定性的情况下,导致校准差和不可靠的模型。在这项工作中,我们介绍了错误的预测(MEEP)的最大熵,分割网络的培训策略,这些网络选择性地惩罚过度自信预测,仅关注错误分类的像素。特别是,我们设计了一个正规化术语,鼓励出于错误的预测,增加了复杂场景中的网络不确定性。我们的方法对于神经结构不可知,不会提高模型复杂性,并且可以与多分割损耗功能耦合。我们在两个具有挑战性的医学图像分割任务中将拟议的策略基准:脑磁共振图像(MRI)中的白质超强度病变,心脏MRI中的心房分段。实验结果表明,具有标准分割损耗的耦合MEEP不仅可以改善模型校准,而且还导致分割质量。
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
Deep learning (DL) analysis of Chest X-ray (CXR) and Computed tomography (CT) images has garnered a lot of attention in recent times due to the COVID-19 pandemic. Convolutional Neural Networks (CNNs) are well suited for the image analysis tasks when trained on humongous amounts of data. Applications developed for medical image analysis require high sensitivity and precision compared to any other fields. Most of the tools proposed for detection of COVID-19 claims to have high sensitivity and recalls but have failed to generalize and perform when tested on unseen datasets. This encouraged us to develop a CNN model, analyze and understand the performance of it by visualizing the predictions of the model using class activation maps generated using (Gradient-weighted Class Activation Mapping) Grad-CAM technique. This study provides a detailed discussion of the success and failure of the proposed model at an image level. Performance of the model is compared with state-of-the-art DL models and shown to be comparable. The data and code used are available at https://github.com/aleesuss/c19.
translated by 谷歌翻译
由于能够提高几个诊断任务的性能,深度神经网络越来越多地被用作医疗保健应用中的辅助工具。然而,由于基于深度学习系统的可靠性,概括性和可解释性的实际限制,这些方法在临床环境中不被广泛采用。因此,已经开发了方法,这在网络培训期间强加了额外的限制,以获得更多的控制,并改善探讨他们在医疗界的接受。在这项工作中,我们调查使用正交球(OS)约束对胸部X射线图像进行Covid-19案例的分类的益处。 OS约束可以写成一个简单的正交性术语,其与分类网络训练期间的标准交叉熵损耗结合使用。以前的研究表明,在对深度学习模型上对这种限制应用于应用这些限制方面表现出显着的益处。我们的研究结果证实了这些观察结果,表明正常性损失函数有效地通过Gradcam可视化,增强的分类性能和减少的模型校准误差产生了改进的语义本地化。我们的方法分别实现了两性和三类分类的准确性提高1.6%和4.8%;找到了应用数据增强的模型的类似结果。除了这些发现之外,我们的工作还提出了OS规范器在医疗保健中的新应用,提高了CoVID-19分类深度学习模型的后HOC可解释性和性能,以便于在临床环境中采用这些方法。我们还确定了我们将来可以探索进一步研究的战略的局限性。
translated by 谷歌翻译
骰子相似度系数(DSC)是由于其鲁棒性对类不平衡的鲁造性而广泛使用的度量和损耗函数。然而,众所周知,DSC损失差异很差,导致在生物医学和临床实践中不能有效地解释的过度自信预测。性能通常是唯一用于评估深度神经网络产生的分段的指标,并且通常忽略校准。然而,校准对于译成生物医学和临床实践是重要的,为科学家和临床医生的解释提供了重要的语境信息。在这项研究中,我们将校准差,作为基于深度学习的生物医学图像分割的新出现挑战。我们提供了一个简单而有效的DSC丢失延伸,命名为DSC ++丢失,可选择地调制与过于自信,不正确的预测相关的罚款。作为独立损失功能,DSC ++损耗达到了在五个良好验证的开源生物医学成像数据集中对传统DSC损耗的显着提高了校准。同样,当将DSC ++丢失集成到基于四个DSC的损耗函数时,我们观察到显着改善。最后,我们使用SoftMax阈值化来说明校准的输出能够剪裁精度召回偏差,这是一种适应模型预测以适应生物医学或临床任务的重要的后处理技术。 DSC ++损失克服了DSC的主要限制,为训练生物医学和临床实践中使用的深度学习分段模型提供了合适的损耗功能。
translated by 谷歌翻译
焊接联合检查(SJI)是生产印刷电路板(PCB)的关键过程。在SJI期间发现焊料错误非常具有挑战性,因为焊接接头的尺寸很小,并且可能需要各种形状。在这项研究中,我们首先表明焊料的特征多样性低,并且可以作为精细颗粒的图像分类任务执行SJI,该任务侧重于难以固定的对象类。为了提高细粒度的分类精度,发现通过最大化熵来惩罚自信模型预测,在文献中很有用。与此信息内联,我们建议使用{\ alpha} -skew Jensen-Shannon Divergence({\ alpha} -js)来惩罚模型预测的信心。我们将{\ alpha} -js正则化与现有基于熵指定的方法和基于注意机制,分割技术,变压器模型和特定损耗函数的方法进行比较。我们表明,在细化的焊料联合分类任务中,所提出的方法可以达到不同模型的F1得分和竞争精度。最后,我们可视化激活图,并表明,凭借熵的规范化,更精确的类歧视区域是局部的,这也更适合噪声。接受代码将在这里接受。
translated by 谷歌翻译
自动分割方法是医学图像分析的重要进步。特别是机器学习技术和深度神经网络,是最先进的大多数医学图像分割任务。类别不平衡的问题在医疗数据集中构成了重大挑战,病变通常占据相对于背景的相对于较小的体积。深度学习算法培训中使用的损失函数对类别不平衡的鲁棒性不同,具有模型收敛的直接后果。分割最常用的损耗函数基于交叉熵损耗,骰子丢失或两者的组合。我们提出了统一的联络损失,是一种新的分层框架,它概括了骰子和基于跨熵的损失,用于处理类别不平衡。我们评估五个公共可用的损失功能,类不平衡的医学成像数据集:CVC-ClinicDB,船舶提取数字视网膜图像(驱动器),乳房超声波2017(Bus2017),脑肿瘤分割2020(Brats20)和肾肿瘤分割2019 (套件19)。我们将损耗功能性能与六个骰子或基于跨熵的损耗函数进行比较,横跨二进制二进制,3D二进制和3D多包子分段任务,展示我们所提出的损失函数对类不平衡具有强大,并且始终如一地优于其他丢失功能。源代码可用:https://github.com/mlyg/unified-focal-loss
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)占据了计算机视野的领域,这要归功于它们提取功能及其在分类问题中出色的表现,例如在自动分析X射线中。不幸的是,这些神经网络被认为是黑盒算法,即不可能了解该算法如何实现最终结果。要将这些算法应用于不同领域并测试方法论的工作原理,我们需要使用可解释的AI技术。医学领域的大多数工作都集中在二进制或多类分类问题上。但是,在许多现实生活中,例如胸部X射线射线,可以同时出现不同疾病的放射学迹象。这引起了所谓的“多标签分类问题”。这些任务的缺点是类不平衡,即不同的标签没有相同数量的样本。本文的主要贡献是一种深度学习方法,用于不平衡的多标签胸部X射线数据集。它为当前未充分利用的Padchest数据集建立了基线,并基于热图建立了可解释的AI技术。该技术还包括概率和模型间匹配。我们系统的结果很有希望,尤其是考虑到使用的标签数量。此外,热图与预期区域相匹配,即它们标志着专家将用来做出决定的区域。
translated by 谷歌翻译
每年有大约4.5亿人受到肺炎的影响,导致250万人死亡。 Covid-19也影响了1.81亿人,这导致了392万人伤亡。如果早期诊断,两种疾病死亡可能会显着降低。然而,目前诊断肺炎(投诉+胸部X射线)和Covid-19(RT-PCR)的方法分别存在专家放射科医生和时间。在深度学习模型的帮助下,可以从胸部X射线或CT扫描立即检测肺炎和Covid-19。这样,诊断肺炎/ Covid-19的过程可以更有效和普遍地制作。在本文中,我们的目标是引出,解释和评估,定性和定量,深入学习方法的主要进步,旨在检测或定位社区获得的肺炎(帽),病毒肺炎和Covid-19从胸部X-的图像光线和CT扫描。作为一个系统的审查,本文的重点在于解释了深度学习模型架构,该架构已经被修改或从划痕,以便WIWTH对概括性的关注。对于每个模型,本文回答了模型所设计的方式的问题,特定模型克服的挑战以及修改模型到所需规格的折衷。还提供了本文描述的所有模型的定量分析,以量化不同模型的有效性与相似的目标。一些权衡无法量化,因此它们在定性分析中明确提到,在整个纸张中完成。通过在一个地方编译和分析大量的研究细节,其中包含所有数据集,模型架构和结果,我们的目标是为对此字段感兴趣的初学者和当前研究人员提供一站式解决方案。
translated by 谷歌翻译
了解模型预测在医疗保健方面至关重要,以促进模型正确性的快速验证,并防止利用利用混淆变量的模型。我们介绍了体积医学图像中可解释的多种异常分类的挑战新任务,其中模型必须指示用于预测每个异常的区域。为了解决这项任务,我们提出了一个多实例学习卷积神经网络,AxialNet,允许识别每个异常的顶部切片。接下来我们将赫雷库姆纳入注意机制,识别子切片区域。我们证明,对于Axialnet,Hirescam的说明得到保证,以反映所用模型的位置,与Grad-Cam不同,有时突出不相关的位置。使用一种产生忠实解释的模型,我们旨在通过一种新颖的面具损失来改善模型的学习,利用赫克斯克姆和3D允许的区域来鼓励模型仅预测基于器官的异常,其中出现的异常。 3D允许的区域通过新方法,分区自动获得,其组合从放射学报告中提取的位置信息与通过形态图像处理获得的器官分割图。总体而言,我们提出了第一种模型,用于解释容量医学图像中的可解释的多异常预测,然后使用掩模损耗来实现36,316扫描的Rad-Chessct数据集中多个异常的器官定位提高33%,代表状态本领域。这项工作推进了胸部CT卷中多种异常模型的临床适用性。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
语义分割包括通过将其分配给从一组所有可用的标签来分类图像的每个像素。在过去的几年里,很多关注转移到这种任务。许多计算机视觉研究人员试图应用AutoEncoder结构来开发可以学习图像语义的模型以及它的低级表示。在给定输入的AutoEncoder架构中,编码器计算的输入的低维表示,然后解码器用于重建原始数据。在这项工作中,我们提出了一个卷积神经网络(CNNS)的集合。在集合方法中,许多不同的型号训练,然后用于分类,整体汇总了单个分类器的输出。该方法利用各种分类器的差异来提高整个系统的性能。通过使用不同的丢失函数强制执行单个分类器中的多样性。特别是,我们提出了一种新的损失函数,从骰子和结构相似度指数的组合产生。通过使用Deeplabv3 +和Hardnet环境结合不同的骨干网络来实现所提出的合奏。该提案是通过关于两个真实情景的广泛实证评估来评估:息肉和皮肤细分。所有代码都在HTTPS://github.com/lorisnanni在线提供。
translated by 谷歌翻译
最近关于Covid-19的研究表明,CT成像提供了评估疾病进展和协助诊断的有用信息,以及帮助理解疾病。有越来越多的研究,建议使用深度学习来使用胸部CT扫描提供快速准确地定量Covid-19。兴趣的主要任务是胸部CT扫描的肺和肺病变的自动分割,确认或疑似Covid-19患者。在这项研究中,我们使用多中心数据集比较12个深度学习算法,包括开源和内部开发的算法。结果表明,合并不同的方法可以提高肺部分割,二元病变分割和多种子病变分割的总体测试集性能,从而分别为0.982,0.724和0.469的平均骰子分别。将得到的二元病变分段为91.3ml的平均绝对体积误差。通常,区分不同病变类型的任务更加困难,分别具有152mL的平均绝对体积差,分别为整合和磨碎玻璃不透明度为0.369和0.523的平均骰子分数。所有方法都以平均体积误差进行二元病变分割,该分段优于人类评估者的视觉评估,表明这些方法足以用于临床实践中使用的大规模评估。
translated by 谷歌翻译
Jaccard索引,也称为交叉联盟(iou),是图像语义分段中最关键的评估度量之一。然而,由于学习目的既不可分解也不是可分解的,则iou得分的直接优化是非常困难的。虽然已经提出了一些算法来优化其代理,但没有提供泛化能力的保证。在本文中,我们提出了一种边缘校准方法,可以直接用作学习目标,在数据分布上改善IOO的推广,通过刚性下限为基础。本方案理论上,根据IOU分数来确保更好的分割性能。我们评估了在七个图像数据集中所提出的边缘校准方法的有效性,显示使用深度分割模型的其他学习目标的IOU分数大量改进。
translated by 谷歌翻译
深度学习算法的最新进展为解决许多医学图像分析问题带来了重大好处。培训深度学习模型通常需要具有专家标记注释的大型数据集。但是,获取专家标记的注释不仅昂贵,而且主观,容易出错,并且观察者内部变异性会引入标签。由于解剖学的模棱两可,使用深度学习模型来细分医学图像时,这尤其是一个问题。基于图像的医学诊断工具使用经过不正确分段标签训练的深度学习模型可以导致错误的诊断和治疗建议。与单评论注释相比,多评价者注释可能更适合于使用小型培训集的深度学习模型进行训练。本文的目的是开发和评估一种基于MRI中病变特征的多评价者注释和解剖学知识来生成概率标签的方法,以及一种使用概率的标签使用归一化活动性损失作为A的病变特征的解剖学知识,以训练分割模型”。耐噪声损失的功能。通过将17个膝盖MRI扫描的二进制基础真理进行比较,以评估该模型,以用于临床分割和检测骨髓病变(BML)。该方法与二进制跨透镜损失函数相比,该方法成功提高了精度14,召回22和骰子得分8%。总体而言,这项工作的结果表明,使用软标签的拟议归一化主动损失成功地减轻了嘈杂标签的影响。
translated by 谷歌翻译
In this era of pandemic, the future of healthcare industry has never been more exciting. Artificial intelligence and machine learning (AI & ML) present opportunities to develop solutions that cater for very specific needs within the industry. Deep learning in healthcare had become incredibly powerful for supporting clinics and in transforming patient care in general. Deep learning is increasingly being applied for the detection of clinically important features in the images beyond what can be perceived by the naked human eye. Chest X-ray images are one of the most common clinical method for diagnosing a number of diseases such as pneumonia, lung cancer and many other abnormalities like lesions and fractures. Proper diagnosis of a disease from X-ray images is often challenging task for even expert radiologists and there is a growing need for computerized support systems due to the large amount of information encoded in X-Ray images. The goal of this paper is to develop a lightweight solution to detect 14 different chest conditions from an X ray image. Given an X-ray image as input, our classifier outputs a label vector indicating which of 14 disease classes does the image fall into. Along with the image features, we are also going to use non-image features available in the data such as X-ray view type, age, gender etc. The original study conducted Stanford ML Group is our base line. Original study focuses on predicting 5 diseases. Our aim is to improve upon previous work, expand prediction to 14 diseases and provide insight for future chest radiography research.
translated by 谷歌翻译