移动边缘学习(MEL)是一种学习范例,可以通过异构边缘设备(例如,IOT设备)来实现对机器学习模型的分布式训练。 Multi-Orchestrator MEL是指具有不同数据集的多个学习任务的共存,每个学习任务由Orchestrator管理,以便于分布式训练过程。在MEL中,培训性能恶化而不提供足够的培训数据或计算资源。因此,激励边缘设备成为学习者并提供其计算资源至关重要,并且提供他们的私人数据或从协调仪接收所需的数据并参与学习任务的培训过程。在这项工作中,我们提出了一种激励机制,我们制定了协调员 - 学习者的互动作为一个2轮Stackelberg游戏,以激励学习者的参与。在第一轮中,学习者决定哪些学习任务从事参与,然后在第二轮培训的数据量,以便他们的效用最大化。然后我们分析游戏并导致学习者的最佳策略。最后,已经进行了数值实验以评估提出的激励机制的性能。
translated by 谷歌翻译
个性化联合学习(PFL)是一种新的联邦学习(FL)方法,可解决分布式用户设备(UES)生成的数据集的异质性问题。但是,大多数现有的PFL实现都依赖于同步培训来确保良好的收敛性能,这可能会导致严重的散乱问题,在这种情况下,训练时间大量延长了最慢的UE。为了解决这个问题,我们提出了一种半同步PFL算法,被称为半同步个性化的FederatedAveraging(Perfeds $^2 $),而不是移动边缘网络。通过共同优化无线带宽分配和UE调度策略,它不仅减轻了Straggler问题,而且还提供了收敛的培训损失保证。我们根据每回合的参与者数量和回合数量来得出Perfeds2收敛速率的上限。在此基础上,可以使用分析解决方案解决带宽分配问题,并且可以通过贪婪算法获得UE调度策略。实验结果与同步和异步PFL算法相比,验证了Perfeds2在节省训练时间和保证训练损失的收敛方面的有效性。
translated by 谷歌翻译
联合学习(FL)能够通过定期聚合培训的本地参数来在多个边缘用户执行大的分布式机器学习任务。为了解决在无线迷雾云系统上实现支持的关键挑战(例如,非IID数据,用户异质性),我们首先基于联合平均(称为FedFog)的高效流行算法来执行梯度参数的本地聚合在云端的FOG服务器和全球培训更新。接下来,我们通过调查新的网络知识的流动系统,在无线雾云系统中雇用FEDFog,这促使了全局损失和完成时间之间的平衡。然后开发了一种迭代算法以获得系统性能的精确测量,这有助于设计有效的停止标准以输出适当数量的全局轮次。为了缓解级体效果,我们提出了一种灵活的用户聚合策略,可以先培训快速用户在允许慢速用户加入全局培训更新之前获得一定程度的准确性。提供了使用若干现实世界流行任务的广泛数值结果来验证FEDFOG的理论融合。我们还表明,拟议的FL和通信的共同设计对于在实现学习模型的可比准确性的同时,基本上提高资源利用是必要的。
translated by 谷歌翻译
联邦元学习(FML)已成为应对当今边缘学习竞技场中的数据限制和异质性挑战的承诺范式。然而,其性能通常受到缓慢的收敛性和相应的低通信效率的限制。此外,由于可用的无线电频谱和物联网设备的能量容量通常不足,因此在在实际无线网络中部署FML时,控制资源分配和能量消耗是至关重要的。为了克服挑战,在本文中,我们严格地分析了每个设备对每轮全球损失减少的贡献,并使用非统一的设备选择方案开发FML算法(称为Nufm)以加速收敛。之后,我们制定了集成NuFM在多通道无线系统中的资源分配问题,共同提高收敛速率并最小化壁钟时间以及能量成本。通过逐步解构原始问题,我们设计了一个联合设备选择和资源分配策略,以解决理论保证问题。此外,我们表明Nufm的计算复杂性可以通过$ O(d ^ 2)$至$ o(d)$(使用模型维度$ d $)通过组合两个一阶近似技术来降低。广泛的仿真结果表明,与现有基线相比,所提出的方法的有效性和优越性。
translated by 谷歌翻译
联邦学习(FL)变得流行,并在训练大型机器学习(ML)模型的情况下表现出很大的潜力,而不会使所有者的原始数据曝光。在FL中,数据所有者可以根据其本地数据培训ML模型,并且仅将模型更新发送到模型更新,而不是原始数据到模型所有者进行聚合。为了提高模型准确性和培训完成时间的学习绩效,招募足够的参与者至关重要。同时,数据所有者是理性的,可能不愿意由于资源消耗而参与协作学习过程。为了解决这些问题,最近有各种作品旨在激励数据业主贡献其资源。在本文中,我们为文献中提出的经济和游戏理论方法提供了全面的审查,以设计刺激数据业主参加流程培训过程的各种计划。特别是,我们首先在激励机制设计中常用的佛罗里达州的基础和背景,经济理论。然后,我们审查博弈理论和经济方法应用于FL的激励机制的应用。最后,我们突出了一些开放的问题和未来关于FL激励机制设计的研究方向。
translated by 谷歌翻译
在这项工作中,我们提出了一种新颖的框架来解决联邦学习(FL)的移动应用程序服务的争吵和隐私问题,考虑到移动用户(MUS)/移动应用程序提供者(MAP),隐私的有限计算/通信资源在贡献数据到地图中的MU中的成本,合理性和激励竞争。特别是,该地图首先基于MUS的信息/特征确定FL过程的一组最佳MU。为了缓解隐私意识的讨论问题,每个选定的MU可以加密本地数据的一部分,并除了本地培训过程之外,还可以将加密数据上载到加密培训过程的地图。为此,每个选定的MU可以根据其预期的培训本地数据和隐私保护的加密数据向地图提出合同。为了找到最佳合同,可以最大限度地利用地图和所有参与峰的同时保持整个系统的高学习质量,首先开发一个基于多个实用程序的基于多个实用程序的基于多项基于的一个基于的基于替代的问题。这些实用程序函数占MUS'隐私成本,地图的计算资源有限,地图和MU之间的不对称信息。然后,我们将问题转换为等同的低复杂性问题,并开发轻量级迭代算法,以有效地找到最佳解决方案。具有真实世界数据集的实验表明,我们的框架可以加快培训时间高达49%,提高预测准确性高达4.6倍,同时增强网络的社会福利,即所有参与实体的总实用性,高达114%与基线方法相比,隐私费用考虑。
translated by 谷歌翻译
在本文中,研究了无线网络的联合学习(FL)。在每个通信回合中,选择一部分设备以有限的时间和能量参与聚合。为了最大程度地减少收敛时间,在基于Stackelberg游戏的框架中共同考虑了全球损失和延迟。具体而言,在Leader级别上,将基于信息的设备选择(AOI)选择为全球损失最小化问题,而子渠道分配,计算资源分配和功率分配在追随者级别被视为延迟最小化问题。通过将追随者级别的问题分为两个子问题,追随者的最佳响应是通过基于单调优化的资源分配算法和基于匹配的子渠道分配算法获得的。通过得出收敛速率的上限,重新制定了领导者级别的问题,然后提出了基于列表的设备选择算法来实现Stackelberg平衡。仿真结果表明,所提出的设备选择方案在全球损失方面优于其他方案,而开发的算法可以显着降低计算和通信的时间消耗。
translated by 谷歌翻译
有限的通信资源,例如带宽和能源以及设备之间的数据异质性是联合学习的两个主要瓶颈(FL)。为了应对这些挑战,我们首先使用部分模型聚合(PMA)设计了一个新颖的FL框架,该框架仅汇总负责特征提取的神经网络的下层,而与复杂模式识别相对应的上层仍保留在个性化设备上。提出的PMA-FL能够解决数据异质性并减少无线通道中的传输信息。然后,我们在非convex损耗函数设置下获得了框架的收敛结合。借助此界限,我们定义了一个新的目标函数,名为“计划数据样本量”,以将原始的不明智优化问题转移到可用于设备调度,带宽分配,计算和通信时间分配的可拖动问题中。我们的分析表明,当PMA-FL的沟通和计算部分具有相同的功率时,可以实现最佳时段。我们还开发了一种二级方法来解决最佳带宽分配策略,并使用SET扩展算法来解决最佳设备调度。与最先进的基准测试相比,提议的PMA-FL在两个典型的异质数据集(即Minist和CIFAR-10)上提高了2.72%和11.6%的精度。此外,提出的联合动态设备调度和资源优化方法的精度比考虑的基准略高,但它们提供了令人满意的能量和时间缩短:MNIST的29%能量或20%的时间缩短; CIFAR-10的能量和25%的能量或12.5%的时间缩短。
translated by 谷歌翻译
联合学习(FL)已成为跨无线边缘设备分配机器学习的流行方法。在这项工作中,我们考虑在设备 - 服务器通信延迟和设备计算异质性下优化FL的模型性能和资源利用之间的权衡。我们提出的StofedDelav算法将本地 - 全局模型组合器包含到FL同步步骤中。我们理论上表征了Stofeddelav的收敛行为,并获得了最佳的组合权重,这考虑了每个设备的全局模型延迟和预期的局部梯度误差。然后,我们制定了一种网络感知优化问题,该问题调整设备的小靶尺寸,以共同最大限度地减少能量消耗和机器学习训练丢失,并通过一系列凸起近似来解决非凸面问题。我们的模拟表明,当调整小批准和组合重量时,STOFeddelav在模型收敛速度和网络资源利用方面优于目前的艺术。此外,我们的方法可以减少模型训练期间所需的上行链路通信轮的数量,以达到相同的精度。
translated by 谷歌翻译
在多机器人合作(MRC)系统中部署移动边缘计算(MEC)部署是在能耗和实现延迟方面完成任务的有效方法。然而,需要共同考虑计算和通信资源以充分利用MEC技术所带来的优势。在本文中,研究了多个机器人协作完成时间关键任务的情况,其中智能主机器人(MR)充当边缘服务器,以向多个从机器人(SRS)提供服务,并且SRS负责环境传感和数据收集。为了节省能源并延长系统的函数时间,提出了两种方案,分别优化计算和通信资源。在第一种方案中,SRS的能量消耗最小化和平衡,同时保证在时间约束下完成任务。在第二种方案中,不仅可以消耗能耗,而且认为SRS的剩余能量被认为是增强系统的鲁棒性。通过分析和数值模拟,我们证明即使第一策略可以保证对总SRS能耗的最小化,MRC系统的函数时间比第一个策略更长。
translated by 谷歌翻译
在本文中,我们研究了多服务器边缘计算中基于区块链的联合学习(BFL)的新延迟优化问题。在此系统模型中,分布式移动设备(MDS)与一组Edge服务器(ESS)通信,以同时处理机器学习(ML)模型培训和阻止开采。为了协助ML模型培训用于资源受限的MD,我们制定了一种卸载策略,使MD可以将其数据传输到相关的ESS之一。然后,我们基于共识机制在边缘层上提出了一个新的分散的ML模型聚合解决方案,以通过基于对等(P2P)基于基于的区块链通信构建全局ML模型。区块链在MDS和ESS之间建立信任,以促进可靠的ML模型共享和合作共识形成,并能够快速消除由中毒攻击引起的操纵模型。我们将延迟感知的BFL作为优化,旨在通过联合考虑数据卸载决策,MDS的传输功率,MDS数据卸载,MDS的计算分配和哈希功率分配来最大程度地减少系统延迟。鉴于离散卸载和连续分配变量的混合作用空间,我们提出了一种具有参数化优势演员评论家算法的新型深度强化学习方案。从理论上讲,我们根据聚合延迟,迷你批量大小和P2P通信回合的数量来表征BFL的收敛属性。我们的数值评估证明了我们所提出的方案优于基线,从模型训练效率,收敛速度,系统潜伏期和对模型中毒攻击的鲁棒性方面。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译
联合学习(FL)是一个有前途的分布式框架,用于协作人工智能模型培训,同时保护用户隐私。引起大量研究关注的引导组件是激励机制刺激佛罗里达用户协作的设计。大多数作品采用以经纪人为中心的方法来帮助中央运营商吸引参与者并进一步获得训练有素的模型。很少有作品认为参与者之间以参与者为中心的合作来追求其共同利益的FL模型,这会引起以经纪人FL的激励机制设计的显着差异。为了协调自私和异质参与者,我们提出了一个新颖的分析框架,以激励以参与者为中心的FL有效,有效的合作。具体而言,我们分别提出了两个新型游戏模型,用于贡献符合贡献的FL(COFL)和贡献感知的FL(CAFL),后者在其中实现了最低贡献阈值机制。我们进一步分析了COFL和CAFL游戏的NASH平衡的独特性和存在,并设计有效的算法以实现平衡溶液。广泛的绩效评估表明,COFL中存在自由骑行现象,通过采用CAFL模型具有优化的最低阈值,可以极大地缓解这种现象。
translated by 谷歌翻译
在本文中,提出了一个绿色,量化的FL框架,该框架在本地培训和上行链路传输中代表具有有限精度水平的数据。在这里,有限的精度级别是通过使用量化的神经网络(QNN)来捕获的,该神经网络(QNN)以固定精确格式量化权重和激活。在考虑的FL模型中,每个设备训练其QNN并将量化的训练结果传输到基站。严格得出了局部训练和传输的能量模型。为了同时最大程度地减少能耗和交流的数量,相对于本地迭代的数量,选定设备的数量以及本地培训和传输的精确级别,在确保融合的同时,提出了多目标优化问题目标准确性约束。为了解决此问题,相对于系统控制变量,分析得出所提出的FL系统的收敛速率。然后,该问题的帕累托边界被表征为使用正常边界检查方法提供有效的解决方案。通过使用NASH讨价还价解决方案并分析派生的收敛速率,从两个目标之间平衡了两种目标之间的权衡的洞察力。仿真结果表明,与代表完全精确的数据相比,提出的FL框架可以减少能源消耗,直到收敛高达52%。
translated by 谷歌翻译
联合学习(FL)使移动设备能够在保留本地数据的同时协作学习共享的预测模型。但是,实际上在移动设备上部署FL存在两个主要的研究挑战:(i)频繁的无线梯度更新v.s.频谱资源有限,以及(ii)培训期间渴望的FL通信和本地计算V.S.电池约束的移动设备。为了应对这些挑战,在本文中,我们提出了一种新型的多位空天空计算(MAIRCOMP)方法,用于FL中本地模型更新的频谱有效聚合,并进一步介绍用于移动的能源有效的FL设计设备。具体而言,高精度数字调制方案是在MAIRCOMP中设计和合并的,允许移动设备同时在多访问通道中同时在所选位置上传模型更新。此外,我们理论上分析了FL算法的收敛性。在FL收敛分析的指导下,我们制定了联合传输概率和局部计算控制优化,旨在最大程度地减少FL移动设备的总体能源消耗(即迭代局部计算 +多轮通信)。广泛的仿真结果表明,我们提出的方案在频谱利用率,能源效率和学习准确性方面优于现有计划。
translated by 谷歌翻译
随着数据生成越来越多地在没有连接连接的设备上进行,因此与机器学习(ML)相关的流量将在无线网络中无处不在。许多研究表明,传统的无线协议高效或不可持续以支持ML,这创造了对新的无线通信方法的需求。在这项调查中,我们对最先进的无线方法进行了详尽的审查,这些方法是专门设计用于支持分布式数据集的ML服务的。当前,文献中有两个明确的主题,模拟的无线计算和针对ML优化的数字无线电资源管理。这项调查对这些方法进行了全面的介绍,回顾了最重要的作品,突出了开放问题并讨论了应用程序方案。
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
Emerging technologies and applications including Internet of Things (IoT), social networking, and crowd-sourcing generate large amounts of data at the network edge. Machine learning models are often built from the collected data, to enable the detection, classification, and prediction of future events. Due to bandwidth, storage, and privacy concerns, it is often impractical to send all the data to a centralized location. In this paper, we consider the problem of learning model parameters from data distributed across multiple edge nodes, without sending raw data to a centralized place. Our focus is on a generic class of machine learning models that are trained using gradientdescent based approaches. We analyze the convergence bound of distributed gradient descent from a theoretical point of view, based on which we propose a control algorithm that determines the best trade-off between local update and global parameter aggregation to minimize the loss function under a given resource budget. The performance of the proposed algorithm is evaluated via extensive experiments with real datasets, both on a networked prototype system and in a larger-scale simulated environment. The experimentation results show that our proposed approach performs near to the optimum with various machine learning models and different data distributions.
translated by 谷歌翻译
智能物联网环境(iiote)由可以协作执行半自动的IOT应用的异构装置,其示例包括高度自动化的制造单元或自主交互收获机器。能量效率是这种边缘环境中的关键,因为它们通常基于由无线和电池运行设备组成的基础设施,例如电子拖拉机,无人机,自动引导车辆(AGV)S和机器人。总能源消耗从多种技术技术汲取贡献,使得能够实现边缘计算和通信,分布式学习以及分布式分区和智能合同。本文提供了本技术的最先进的概述,并说明了它们的功能和性能,特别关注资源,延迟,隐私和能源消耗之间的权衡。最后,本文提供了一种在节能IIOTE和路线图中集成这些能力技术的愿景,以解决开放的研究挑战
translated by 谷歌翻译
联合学习(FL)使移动边缘计算(MEC)中的设备能够在不上载本地数据的情况下协作培训共享模型。可以应用梯度压缩来缓解通信开销,但随着梯度压缩的流动仍然面临着巨大的挑战。为了部署绿色MEC,我们提出了Fedgreen,它通过细粒度梯度压缩增强了原始流体,以有效控制设备的总能耗。具体地,我们介绍了相关的操作,包括设备侧梯度减少和服务器侧元素 - 明智的聚合,以便于FL中的梯度压缩。根据公共数据集,我们研究了压缩的本地梯度对不同压缩比的贡献。之后,我们制定和解决学习精度 - 能效概率问题,其中为每个设备导出最佳压缩比和计算频率。实验结果表明,与基线方案相比,鉴于80%的测试精度要求,FedGreen减少了装置总能耗的至少32%。
translated by 谷歌翻译