Morphological neurons, that is morphological operators such as dilation and erosion with learnable structuring elements, have intrigued researchers for quite some time because of the power these operators bring to the table despite their simplicity. These operators are known to be powerful nonlinear tools, but for a given problem coming up with a sequence of operations and their structuring element is a non-trivial task. So, the existing works have mainly focused on this part of the problem without delving deep into their applicability as generic operators. A few works have tried to utilize morphological neurons as a part of classification (and regression) networks when the input is a feature vector. However, these methods mainly focus on a specific problem, without going into generic theoretical analysis. In this work, we have theoretically analyzed morphological neurons and have shown that these are far more powerful than previously anticipated. Our proposed morphological block, containing dilation and erosion followed by their linear combination, represents a sum of hinge functions. Existing works show that hinge functions perform quite well in classification and regression problems. Two morphological blocks can even approximate any continuous function. However, to facilitate the theoretical analysis that we have done in this paper, we have restricted ourselves to the 1D version of the operators, where the structuring element operates on the whole input. Experimental evaluations also indicate the effectiveness of networks built with morphological neurons, over similarly structured neural networks.
translated by 谷歌翻译
作为一种强大的建模方法,分段线性神经网络(PWLNNS)已在各个领域都被证明是成功的,最近在深度学习中。为了应用PWLNN方法,长期以来一直研究了表示和学习。 1977年,规范表示率先通过增量设计学到了浅层PWLNN的作品,但禁止使用大规模数据的应用。 2010年,纠正的线性单元(RELU)提倡在深度学习中PWLNN的患病率。从那以后,PWLNNS已成功地应用于广泛的任务并实现了有利的表现。在本引物中,我们通过将作品分组为浅网络和深层网络来系统地介绍PWLNNS的方法。首先,不同的PWLNN表示模型是由详细示例构建的。使用PWLNNS,提出了学习数据的学习算法的演变,并且基本理论分析遵循深入的理解。然后,将代表性应用与讨论和前景一起引入。
translated by 谷歌翻译
众所周知,$ O(n)$参数足以让神经网络记住任意$ N $ INPUT-LABE标签对。通过利用深度,我们显示$ O(n ^ {2/3})$参数足以在输入点的分离的温和条件下记住$ n $对。特别是,更深的网络(即使是宽度为3美元),也会显示比浅网络更有成对,这也同意最近的作品对函数近似的深度的好处。我们还提供支持我们理论发现的经验结果。
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
我们在回归任务的背景下研究二元激活的神经网络,为这些特定网络的表现提供保证,并提出一种用于构建此类网络的贪婪算法。为了满足预测因素的资源需求较小,贪婪的方法无需提前修复网络的架构:一次构建一层,一次是一个神经元,导致预测因子并不必不是宽。深入执行给定的任务。与增强算法类似,我们的方法可以保证每次将神经元添加到一层时都会减少训练损失。这与大多数依赖于随机梯度下降的训练方案有很大的不同(避免了由替代物(如直通估计器或连续二进制化)等二进制激活功能的二进制激活功能的0个衍生衍生物问题)。我们表明,我们的方法提供了紧凑而稀疏的预测因子,同时获得了与训练二进制激活网络的最先进方法相似的性能。
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
Relu完全连接的网络普遍存在但无法诠释,因为它们适用于多层结构的分段线性函数和模型重量的复杂相互作用。本文采用了一种新的方法来通过在各个件(零件)上的设定操作来实现分段。这是通过近似规范正常形式并使用所得到的模型来完成的。这提供了特殊的优点(a)对拟合功能的参数的强对应关系(高可解释性); (b)能够符合连续功能的任何组合作为分段功能(易于设计); (c)在域的目标区域(有针对性学习)中添加新的非线性的能力; (d)避免分层的等式的简单性。它也可以在分段线性函数的总体Max-min表示中表达,这具有理论上的缓解和可信度。在模拟的回归和分类任务和基准数据集上测试了该架构,包括UCI数据集,MNIST,FMNIST和CIFAR 10。此性能与完全连接的架构相同。它可以找到各种应用,其中必须由可解释层替换完全连接的图层。
translated by 谷歌翻译
由路由器控制的稀疏激活模型(MOE)层的混合物(MOE)层在深度学习方面取得了巨大的成功。但是,对这种建筑的理解仍然难以捉摸。在本文中,我们正式研究了MOE层如何改善神经网络学习的性能以及为什么混合模型不会崩溃成单个模型。我们的经验结果表明,基本问题的集群结构和专家的非线性对于MOE的成功至关重要。为了进一步理解这一点,我们考虑了固有群集结构的具有挑战性的分类问题,这很难使用单个专家学习。然而,使用MOE层,通过将专家选择为两层非线性卷积神经网络(CNN),我们表明可以成功地学习问题。此外,我们的理论表明,路由器可以学习群集中心的特征,这有助于将输入复杂问题分为单个专家可以征服的更简单的线性分类子问题。据我们所知,这是正式了解MOE层的深度学习机制的第一个结果。
translated by 谷歌翻译
除了极其非线性的情况外,如果不是数十亿个参数来解决或至少要获得良好的解决方案,并且众所周知,众所周知,众所周知,并且通过深化和扩大其拓扑来实现复杂性的神经网络增加更好近似所需的非线性水平。然而,紧凑的拓扑始终优先于更深的拓扑,因为它们提供了使用较少计算单元和更少参数的优势。这种兼容性以减少的非线性的价格出现,因此有限的解决方案搜索空间。我们提出了使用自动多项式内核估计的1维多项式神经网络(1DPNN)模型,用于1维卷积神经网络(1dcnns),并且从第一层引入高度的非线性,这可以补偿深度的需要和/或宽拓扑。我们表明,这种非线性使得模型能够产生比与音频信号相关的各种分类和回归问题的常规1dcnn的计算和空间复杂性更好的结果,即使它在神经元水平上引入了更多的计算和空间复杂性。实验在三个公共数据集中进行,并证明,在解决的问题上,所提出的模型可以在更少的时间内从数据中提取比1dcnn更多的相关信息,并且存储器较少。
translated by 谷歌翻译
我们有助于更好地理解由具有Relu激活和给定架构的神经网络表示的功能。使用来自混合整数优化,多面体理论和热带几何的技术,我们为普遍近似定理提供了数学逆向,这表明单个隐藏层足以用于学习任务。特别是,我们调查完全可增值功能是否完全可以通过添加更多层(没有限制大小)来严格增加。由于它为神经假设类别代表的函数类提供给算法和统计方面,这个问题对算法和统计方面具有潜在的影响。然而,据我们所知,这个问题尚未在神经网络文学中调查。我们还在这些神经假设类别中代表功能所需的神经网络的大小上存在上限。
translated by 谷歌翻译
连接的决策边界用于不同区域,例如图像分割,聚类,α形或在ND空间中定义区域。但是,在机器学习文献中缺乏使用神经网络生成这种连接的决策边界的方法。在探索此类方法时,我们发现可以通过阈值来生成这种决策边界,称为INVEX函数。我们发现INVEX函数与区域和歧管的连接性之间的联系,并将连接性和位置应用于解释ND-DATA空间的基础。在本文中,我们提出了两种使用神经网络构建INVEX函数的方法。第一个是基于直觉开发的,并使用我们的方法(梯度剪辑梯度惩罚)来限制该函数。第二个是基于关于InVex函数与可逆函数组成的关系的稍后发现。使用连接性作为基本解释方法,我们创建基于连接的区域的分类器。我们表明,多个基于集合的分类器可以近似任何分类功能。在“实验”部分中,我们首先将INVEX函数用于回归和分类任务,以可视化2D玩具数据集中的全局最优性和连接设置。此外,我们使用我们的方法使用模型集合以及在大型数据集上使用单个模型进行分类。实验表明,基于连接的基于集合的分类器对普通神经网络分类器没有明显的缺点。我们还评估了INVEX功能和连接集的各种属性。对这项工作的总体探索表明,INVEX功能对于理解和应用输入空间的局部性和连接性至关重要,这对于多个任务有用。
translated by 谷歌翻译
We study the expressibility and learnability of convex optimization solution functions and their multi-layer architectural extension. The main results are: \emph{(1)} the class of solution functions of linear programming (LP) and quadratic programming (QP) is a universal approximant for the $C^k$ smooth model class or some restricted Sobolev space, and we characterize the rate-distortion, \emph{(2)} the approximation power is investigated through a viewpoint of regression error, where information about the target function is provided in terms of data observations, \emph{(3)} compositionality in the form of a deep architecture with optimization as a layer is shown to reconstruct some basic functions used in numerical analysis without error, which implies that \emph{(4)} a substantial reduction in rate-distortion can be achieved with a universal network architecture, and \emph{(5)} we discuss the statistical bounds of empirical covering numbers for LP/QP, as well as a generic optimization problem (possibly nonconvex) by exploiting tame geometry. Our results provide the \emph{first rigorous analysis of the approximation and learning-theoretic properties of solution functions} with implications for algorithmic design and performance guarantees.
translated by 谷歌翻译
彩票假设猜测稀疏子网的存在大型随机初始化的深神经网络,可以在隔离中成功培训。最近的工作已经通过实验观察到这些门票中的一些可以在各种任务中实际重复使用,以某种形式的普遍性暗示。我们正规化这一概念,理论上证明不仅存在此类环球票,而且还不需要进一步培训。我们的证据介绍了一些与强化强烈彩票票据相关的技术创新,包括延长子集合结果的扩展和利用更高量的深度的策略。我们的明确稀疏建设普遍函数家庭可能具有独立的兴趣,因为它们突出了单变量卷积架构引起的代表效益。
translated by 谷歌翻译
受生物神经元的启发,激活功能在许多现实世界中常用的任何人工神经网络的学习过程中起着重要作用。文献中已经提出了各种激活功能,用于分类和回归任务。在这项工作中,我们调查了过去已经使用的激活功能以及当前的最新功能。特别是,我们介绍了多年来激活功能的各种发展以及这些激活功能的优势以及缺点或局限性。我们还讨论了经典(固定)激活功能,包括整流器单元和自适应激活功能。除了基于表征的激活函数的分类法外,还提出了基于应用的激活函数的分类法。为此,对MNIST,CIFAR-10和CIFAR-100等分类数据集进行了各种固定和自适应激活函数的系统比较。近年来,已经出现了一个具有物理信息的机器学习框架,以解决与科学计算有关的问题。为此,我们还讨论了在物理知识的机器学习框架中使用的激活功能的各种要求。此外,使用Tensorflow,Pytorch和Jax等各种机器学习库之间进行了不同的固定和自适应激活函数进行各种比较。
translated by 谷歌翻译
深度神经网络的鲁棒性对于现代AI支持系统至关重要,应正式验证。在广泛的应用中采用了类似乙状结肠的神经网络。由于它们的非线性,通常会过度评估乙状结肠样激活功能,以进行有效的验证,这不可避免地引入了不精确度。已大量的努力致力于找到所谓的更紧密的近似值,以获得更精确的验证结果。但是,现有的紧密定义是启发式的,缺乏理论基础。我们对现有神经元的紧密表征进行了彻底的经验分析,并揭示它们仅在特定的神经网络上是优越的。然后,我们将网络紧密度的概念介绍为统一的紧密度定义,并表明计算网络紧密度是一个复杂的非convex优化问题。我们通过两个有效的,最紧密的近似值从不同的角度绕过复杂性。结果表明,我们在艺术状态下的方法实现了有希望的表现:(i)达到高达251.28%的改善,以提高认证的较低鲁棒性界限; (ii)在卷积网络上表现出更为精确的验证结果。
translated by 谷歌翻译
在这项工作中,我们探讨了H +“旧常规功能的深度整流二次单位神经网络的近似能力,相对于统一标准。我们发现理论近似大量取决于神经网络中的所选激活函数。
translated by 谷歌翻译
为了对线性不可分离的数据进行分类,神经元通常被组织成具有至少一个隐藏层的多层神经网络。灵感来自最近神经科学的发现,我们提出了一种新的神经元模型以及一种新的激活函数,可以使用单个神经元来学习非线性决策边界。我们表明标准神经元随后是新颖的顶端枝晶激活(ADA)可以使用100 \%的精度来学习XOR逻辑函数。此外,我们在计算机视觉,信号处理和自然语言处理中进行五个基准数据集进行实验,即摩洛哥,utkface,crema-d,时尚mnist和微小的想象成,表明ADA和泄漏的ADA功能提供了卓越的结果用于各种神经网络架构的整流线性单元(Relu),泄漏的Relu,RBF和嗖嗖声,例如单隐层或两个隐藏层的多层的Perceptrons(MLPS)和卷积神经网络(CNNS),如LENET,VGG,RESET和字符级CNN。当我们使用具有顶端树突激活(Pynada)的金字塔神经元改变神经元的标准模型时,我们获得进一步的性能改进。我们的代码可用于:https://github.com/raduionescu/pynada。
translated by 谷歌翻译
人工神经网络(ANN)训练景观的非凸起带来了固有的优化困难。虽然传统的背传播随机梯度下降(SGD)算法及其变体在某些情况下是有效的,但它们可以陷入杂散的局部最小值,并且对初始化和普通公共表敏感。最近的工作表明,随着Relu激活的ANN的培训可以重新重整为凸面计划,使希望能够全局优化可解释的ANN。然而,天真地解决凸训练制剂具有指数复杂性,甚至近似启发式需要立方时间。在这项工作中,我们描述了这种近似的质量,并开发了两个有效的算法,这些算法通过全球收敛保证培训。第一算法基于乘法器(ADMM)的交替方向方法。它解决了精确的凸形配方和近似对应物。实现线性全局收敛,并且初始几次迭代通常会产生具有高预测精度的解决方案。求解近似配方时,每次迭代时间复杂度是二次的。基于“采样凸面”理论的第二种算法更简单地实现。它解决了不受约束的凸形制剂,并收敛到大约全球最佳的分类器。当考虑对抗性培训时,ANN训练景观的非凸起加剧了。我们将稳健的凸优化理论应用于凸训练,开发凸起的凸起制剂,培训Anns对抗对抗投入。我们的分析明确地关注一个隐藏层完全连接的ANN,但可以扩展到更复杂的体系结构。
translated by 谷歌翻译
本文识别数据分布的结构属性,使得深神经网络能够分层学习。我们定义了在布尔超立方体上的功能的“楼梯”属性,该功能在沿着增加链的低阶傅里叶系数可达高阶傅里叶系数。我们证明了满足该属性的功能可以在多项式时间中使用常规神经网络上的分层随机坐标血液中学到多项式时间 - 一类网络架构和具有同质性属性的初始化。我们的分析表明,对于这种阶梯功能和神经网络,基于梯度的算法通过贪婪地组合沿网络深度的较低级别特征来了解高级功能。我们进一步回复了我们的理论结果,实验显示楼梯功能也是由具有随机梯度下降的更多标准Reset架构进行学习的。理论和实验结果都支持阶梯属性在理解基于梯度的学习的能力的情况下,与可以模仿最近所示的任何SQ或PAC算法的一般多项式网络相反,阶梯属性在理解普通网络上的能力相反。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译