变形金刚在序列建模及以后取得了显着的成功,但相对于输入序列的长度,二次计算和记忆复杂性遭受了损失。利用技术包括稀疏和线性的注意力和哈希技巧;已经提出了有效的变压器来降低变压器的二次复杂性,但会显着降低准确性。作为响应,我们首先将计算注意图的线性注意力和残差连接解释为梯度下降步骤。然后,我们将动量引入这些组件,并提出\ emph {动量变压器},该动量利用动量来提高线性变压器的精度,同时保持线性内存和计算复杂性。此外,我们制定了一种自适应策略,以根据二次优化的最佳动量计算模型的动量值。这种自适应动量消除了寻找最佳动量值的需求,并进一步增强了动量变压器的性能。包括图像生成和机器翻译在内的自回归和非自动回归任务的一系列实验表明,动量变压器在训练效率和准确性方面优于流行的线性变压器。
translated by 谷歌翻译
Transformers achieve remarkable performance in several tasks but due to their quadratic complexity, with respect to the input's length, they are prohibitively slow for very long sequences. To address this limitation, we express the self-attention as a linear dot-product of kernel feature maps and make use of the associativity property of matrix products to reduce the complexity from O N 2 to O (N ), where N is the sequence length. We show that this formulation permits an iterative implementation that dramatically accelerates autoregressive transformers and reveals their relationship to recurrent neural networks. Our linear transformers achieve similar performance to vanilla transformers and they are up to 4000x faster on autoregressive prediction of very long sequences.
translated by 谷歌翻译
多头注意力是最先进的变压器背后的推动力,它在各种自然语言处理(NLP)和计算机视觉任务中实现了出色的性能。已经观察到,对于许多应用,这些注意力头会学习冗余嵌入,并且大多数可以在不降低模型性能的情况下去除。受到这一观察的启发,我们提出了变压器的混合物(变压器-MGK)的混合物,这是一种新型的变压器架构,用每个头部的钥匙混合了变压器中的冗余头部。这些键的混合物遵循高斯混合模型,并使每个注意力头有效地集中在输入序列的不同部分上。与传统的变压器对应物相比,变压器-MGK会加速训练和推理,具有较少的参数,并且需要更少的拖船来计算,同时实现跨任务的可比性或更高的准确性。 Transformer-MGK也可以轻松扩展到线性注意力。我们从经验上证明了在一系列实用应用中变形金属MGK的优势,包括语言建模和涉及非常长序列的任务。在Wikitext-103和远程竞技场基准中,具有4个头部的变压器MGK具有与基线变压器具有8个头的可比性或更好的性能。
translated by 谷歌翻译
变压器注意机制的二次计算和内存复杂性限制了对长序列建模的可扩展性。在本文中,我们提出了Luna,一种线性统一嵌套关注机制,使Softmax注意力具有两个嵌套线性关注功能,仅产生线性(与二次)的时间和空间复杂度相反。具体地,通过第一注意功能,LUNA将输入序列包装成固定长度的序列。然后,使用第二关注功能未包装包装序列。与更传统的关注机制相比,LUNA引入具有固定长度的附加序列作为输入和额外的相应输出,允许LUNA线性地进行关注操作,同时还存储足够的上下文信息。我们对三个序列建模任务的基准进行了广泛的评估:长上下文序列建模,神经机平移和大型预磨损的屏蔽语言建模。竞争甚至更好的实验结果表明了Luna的有效性和效率与各种各样相比
translated by 谷歌翻译
变压器注意机制中的设计选择,包括弱电感偏置和二次计算复杂性,限制了其用于建模长序列的应用。在本文中,我们介绍了一个简单的,理论上的,单头的门控注意机制,配备了(指数)移动平均线,以将局部依赖性的电感偏置纳入位置 - 敏锐的注意机制中。我们进一步提出了一个具有线性时间和空间复杂性的大型变体,但通过将整个序列分为固定长度的多个块,仅产生最小的质量损失。对广泛的序列建模基准测试的广泛实验,包括远距离竞技场,神经机器翻译,自动回归语言建模以及图像和语音分类,表明,巨人比其他序列模型取得了重大改进,包括变种物的变体和最新的变体模型状态空间模型。
translated by 谷歌翻译
序列建模的一个中心目标是设计一个单个原则模型,该模型可以解决各种方式和任务,尤其是在远程依赖方面的序列数据。尽管包括RNN,CNN和Transformers在内的传统模型具有用于捕获长期依赖性的专业变体,但它们仍然很难扩展到长时间的10000美元或更多步骤。通过模拟基本状态空间模型(SSM)\(x'(t)= ax(t)= ax(t) + bu(t),y(t)= cx(t) + du(t) + du(t)\ ), and showed that for appropriate choices of the state matrix \( A \), this system could handle long-range dependencies mathematically and empirically.但是,该方法具有过度的计算和内存需求,使其无法作为一般序列建模解决方案。我们根据SSM的新参数化提出了结构化状态空间序列模型(S4),并表明它可以比以前的方法更有效地计算出其理论强度。我们的技术涉及对\(a \)进行低级校正的调节,从而使其对角度稳定,并将SSM降低到库奇内核的精心研究的计算中。 S4在各种既定的基准测试范围内取得了强劲的经验结果,包括(i)在顺序CIFAR-10上的91 \%精度,没有数据增强或辅助损失,与较大的2-D Resnet相当,(ii)实质上关闭。在图像和语言建模任务上与变形金刚的差距,同时在远程竞技场基准的每个任务上执行每一代$ 60 \ times $ $(iii)sota,包括求解所有先前工作的挑战性path-x任务,而所有先前工作的长度为16K,同时与所有竞争对手一样高效。
translated by 谷歌翻译
在这项工作中,我们介绍了内核化变压器,这是一个通用,可扩展的,数据驱动的框架,用于学习变压器中的内核功能。我们的框架将变压器内核作为光谱特征图之间的点产物近似,并通过学习光谱分布来学习内核。这不仅有助于学习通用的内核端到端,而且还可以减少变压器从二次到线性的时间和空间复杂性。我们表明,在准确性和计算效率方面,内核化的变压器实现了与现有的有效变压器体系结构相当的性能。我们的研究还表明,内核的选择对性能有重大影响,而内核学习变体是固定内核变压器的竞争替代方案,无论是长时间的序列任务。
translated by 谷歌翻译
状态空间模型已显示在建模远距离依赖性方面有效,特别是序列分类任务。在这项工作中,我们着重于对英语书籍,GitHub源代码和Arxiv数学文章的自回旋序列建模。基于围绕封闭激活功能的有效性的最新发展,我们提出了一个名为“封闭状态空间(GSS)”的新层,并表明它的训练速度明显快于TPU的S4(即DSS)的对角线版本,具有相当竞争力 - 基于变压器的基线,并表现出零击向更长的输入,同时直接实施。最后,我们表明,利用自我意见来建模局部依赖性,可以进一步提高GSS的性能。
translated by 谷歌翻译
现实世界中的数据是高维的:即使在压缩后,书籍,图像或音乐表演也很容易包含数十万个元素。但是,最常用的自回归模型,变压器非常昂贵,以缩放捕获这种远程结构所需的输入和层数。我们开发了感知者AR,这是一种自回归的模态 - 不合骨架构,它使用交叉注意力将远程输入映射到少数潜在的潜在,同时还可以维护端到端的因果关系掩盖。感知器AR可以直接进行十万个令牌,从而实现了实用的长篇小写密度估计,而无需手工制作的稀疏模式或记忆机制。当对图像或音乐进行培训时,感知器AR会生成具有清晰长期连贯性和结构的输出。我们的架构还获得了长期基准测试的最新可能性,包括64 x 64个Imagenet图像和PG-19书籍。
translated by 谷歌翻译
由于自我关注模块的二次空间和时间复杂性,基于变压器的模型在处理长序列中是不高的。为了解决此限制,建议通过分别通过低维投影和行选择来降低线性(模数对数因子)的二次复杂度。这两种型号本质上连接,并了解他们的连接,我们介绍了矩阵素描的理论框架。基于理论分析,我们提出了Skeinformer加速自我关注,进一步提高了三个精心设计的组件的自我关注的准确性:列采样,自适应行标准化和飞行员采样重新利用。关于长距离竞技场(LRA)基准的实验表明,我们的方法以始终如一的较小时间/空间占地面积优于替代方案。
translated by 谷歌翻译
由于其二次复杂性,是变压器中的关注模块,其是变压器中的重要组件不能高效地扩展到长序列。许多工作侧重于近似于尺寸的圆点 - 指数的软MAX功能,导致分二次甚至线性复杂性变压器架构。但是,我们表明这些方法不能应用于超出点的指数样式的更强大的注意模块,例如,具有相对位置编码(RPE)的变压器。由于在许多最先进的模型中,相对位置编码被用作默认,设计可以包含RPE的高效变压器是吸引人的。在本文中,我们提出了一种新颖的方法来加速对RPE的转化仪的关注计算在核心化的关注之上。基于观察到相对位置编码形成Toeplitz矩阵,我们数在数学上表明,可以使用快速傅里叶变换(FFT)有效地计算具有RPE的核化注意。使用FFT,我们的方法实现$ \ mathcal {o}(n \ log n)$时间复杂性。有趣的是,我们进一步证明使用相对位置编码适当地可以减轻香草群关注的培训不稳定问题。在广泛的任务上,我们经验证明我们的模型可以从头开始培训,没有任何优化问题。学习模型比许多高效的变压器变体更好地执行,并且在长序列制度中比标准变压器更快。
translated by 谷歌翻译
The vast majority of successful deep neural networks are trained using variants of stochastic gradient descent (SGD) algorithms. Recent attempts to improve SGD can be broadly categorized into two approaches: (1) adaptive learning rate schemes, such as AdaGrad and Adam, and (2) accelerated schemes, such as heavy-ball and Nesterov momentum. In this paper, we propose a new optimization algorithm, Lookahead, that is orthogonal to these previous approaches and iteratively updates two sets of weights. Intuitively, the algorithm chooses a search direction by looking ahead at the sequence of "fast weights" generated by another optimizer. We show that Lookahead improves the learning stability and lowers the variance of its inner optimizer with negligible computation and memory cost. We empirically demonstrate Lookahead can significantly improve the performance of SGD and Adam, even with their default hyperparameter settings on ImageNet, CIFAR-10/100, neural machine translation, and Penn Treebank.
translated by 谷歌翻译
自我发挥作用机制通过在所有输入令牌之间使用成对的注意来对远程环境进行建模。在这样做时,他们假设由个体令牌(例如文本字符或图像像素)定义的固定注意粒度,这对于在较高级别上建模复杂依赖性可能不是最佳的。在本文中,我们提出了ContextPool,通过调整每个令牌的注意力粒度来解决此问题。受到与合并以捕获远程依赖关系的Convnets成功的启发,我们学会了为每个令牌汇总相邻功能,然后在给定的注意力层中计算注意力。合并的权重和支撑大小是自适应确定的,允许汇总功能以不同的规模编码有意义的上下文。我们表明,ContextPool使注意力模型更具表现力,经常以更少的层次实现强大的性能,从而大大降低了成本。实验验证我们的上下文池模块插入变压器模型时,使用几种语言和图像基准的计算较少计算,匹配或超越了最先进的性能,胜过最新的作品,这些作品具有学习的上下文大小或稀疏注意的模式,并且也适用为了进行有效的功能学习。
translated by 谷歌翻译
Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L 2 ) to O(L log L), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.
translated by 谷歌翻译
Transformer models have achieved superior performance in various natural language processing tasks. However, the quadratic computational cost of the attention mechanism limits its practicality for long sequences. There are existing attention variants that improve the computational efficiency, but they have limited ability to effectively compute global information. In parallel to Transformer models, state space models (SSMs) are tailored for long sequences, but they are not flexible enough to capture complicated local information. We propose SPADE, short for $\underline{\textbf{S}}$tate s$\underline{\textbf{P}}$ace $\underline{\textbf{A}}$ugmente$\underline{\textbf{D}}$ Transform$\underline{\textbf{E}}$r. Specifically, we augment a SSM into the bottom layer of SPADE, and we employ efficient local attention methods for the other layers. The SSM augments global information, which complements the lack of long-range dependency issue in local attention methods. Experimental results on the Long Range Arena benchmark and language modeling tasks demonstrate the effectiveness of the proposed method. To further demonstrate the scalability of SPADE, we pre-train large encoder-decoder models and present fine-tuning results on natural language understanding and natural language generation tasks.
translated by 谷歌翻译
最近,提出了随机特征专注(RFA),以通过线性化指数核来近似线性时间和空间复杂性的软磁性注意力。在本文中,我们首先提出了一种新颖的观点,以通过将RFA重新铸造为自称的重要性采样器来理解这种近似值的偏见。这种观点进一步阐明了整个软磁注意的\ emph {nobaled}估计量,称为随机注意(RA)。RA通过特定的分布构建积极的随机特征,并享有极大的改善近似保真度,尽管表现出二次复杂性。通过结合RA中的表现力和RFA的效率,我们开发了一种新型的线性复杂性自我发项机制,称为线性随机注意(LARA)。跨各个领域的广泛实验表明,RA和LARA可显着提高RFA的性能。
translated by 谷歌翻译
变压器架构现在是序列建模任务的核心。注意机制是核心,它可以在序列中对长期依赖性进行有效的建模。最近,变压器已成功地应用于计算机视觉域,在该域中首先将2D图像分割成斑块,然后将其视为1D序列。然而,这种线性化会损害图像中空间位置的概念,该图像具有重要的视觉线索。为了弥合差距,我们提出了连锁反应,这是视觉变压器的次级注意机制。基于最近基于内核的有效注意机制,我们设计了一种新型的动态编程算法,该算法将不同令牌的贡献加重了与它们在线性观察到的2D空间中相对空间距离的查询的贡献。广泛的实验和分析证明了连锁反应对各种视觉任务的有效性。
translated by 谷歌翻译
有效地对远程依赖性建模是序列建模的重要目标。最近,使用结构化状态空间序列(S4)层的模型在许多远程任务上实现了最先进的性能。 S4层将线性状态空间模型(SSM)与深度学习技术结合在一起,并利用HIPPO框架进行在线功能近似以实现高性能。但是,该框架导致了架构约束和计算困难,使S4方法变得复杂,可以理解和实施。我们重新审视这样的想法,即遵循河马框架对于高性能是必要的。具体而言,我们替换了许多独立的单输入单输出(SISO)SSM的库S4层与一个多输入的多输出(MIMO)SSM一起使用,并具有降低的潜在尺寸。 MIMO系统的缩小潜在维度允许使用有效的并行扫描,从而简化了将S5层应用于序列到序列转换所需的计算。此外,我们将S5 SSM的状态矩阵初始化,其近似与S4 SSMS使用的河马级矩阵近似,并表明这是MIMO设置的有效初始化。 S5与S4在远程任务上的表现相匹配,包括在远程竞技场基准的套件中平均达到82.46%,而S4的80.48%和最佳的变压器变体的61.41%。
translated by 谷歌翻译
Self-attention has recently been adopted for a wide range of sequence modeling problems. Despite its effectiveness, self-attention suffers from quadratic compute and memory requirements with respect to sequence length. Successful approaches to reduce this complexity focused on attending to local sliding windows or a small set of locations independent of content. Our work proposes to learn dynamic sparse attention patterns that avoid allocating computation and memory to attend to content unrelated to the query of interest. This work builds upon two lines of research: it combines the modeling flexibility of prior work on content-based sparse attention with the efficiency gains from approaches based on local, temporal sparse attention. Our model, the Routing Transformer, endows selfattention with a sparse routing module based on online k-means while reducing the overall complexity of attention to O(n 1.5 d) from O(n 2 d) for sequence length n and hidden dimension d. We show that our model outperforms comparable sparse attention models on language modeling on Wikitext-103 (15.8 vs 18.3 perplexity), as well as on image generation on ImageNet-64 (3.43 vs 3.44 bits/dim) while using fewer self-attention layers. Additionally, we set a new state-of-the-art on the newly released PG-19 data-set, obtaining a test perplexity of 33.2 with a 22 layer Routing Transformer model trained on sequences of length 8192. We open-source the code for Routing Transformer in Tensorflow. *
translated by 谷歌翻译
最近,已经提出了许多有效的变压器,以降低由软磁性注意引起的标准变压器的二次计算复杂性。但是,他们中的大多数只是用有效的注意机制交换SoftMax,而无需考虑定制的体系结构,特别是为了有效的关注。在本文中,我们认为手工制作的香草变压器体系结构可用于软马克斯的注意力可能不适合有效的变压器。为了解决这个问题,我们提出了一个新框架,通过神经体系结构搜索(NAS)技术找到有效变压器的最佳体系结构。提出的方法在流行的机器翻译和图像分类任务上进行了验证。我们观察到,与标准变压器相比,有效变压器的最佳体系结构的计算降低,但总体准确性较低。这表明SoftMax的注意力和有效的注意力具有自己的区别,但它们都无法同时平衡准确性和效率。这激发了我们混合两种注意力以减少性能失衡。除了现有NAS变压器方法中常用的搜索空间外,我们还提出了一个新的搜索空间,该空间允许NAS算法与架构一起自动搜索注意变体。 WMT'EN-DE和CIFAR-10上的广泛实验表明,我们的搜索架构与标准变压器保持了可比的精度,并具有明显提高的计算效率。
translated by 谷歌翻译