全原子和粗粒分子动力学是两个广泛使用的计算工具,用于研究蛋白质的构象状态。然而,这两种仿真方法遭受了这样的事实,即在没有获得超级计算资源的情况下,难以实现这些状态的时间和长度尺度。这种方法的一种替代方法是基于编码分子动力学的原子轨迹作为没有物理粒子的速记版本,然后学习通过使用人工智能来传播编码的轨迹。在这里,我们表明,作为Ramachandran盆地类的向量,分子动力学轨迹框架框架的简单文本表示保留了蛋白质在每个帧中的完整原子代表的大多数结构信息,并且可用于生成无原子轨迹适用于训练不同类型的生成神经网络。反过来,训练有素的生成模型可用于无限期地扩展无原子动力学,或在潜在的模型中从其表示中采样蛋白质的构象空间。我们将这种方法定义为没有分子的分子动力学,并表明它可以涵盖与传统分子动力学难以访问的蛋白质的物理相关状态。
translated by 谷歌翻译
A generalized understanding of protein dynamics is an unsolved scientific problem, the solution of which is critical to the interpretation of the structure-function relationships that govern essential biological processes. Here, we approach this problem by constructing coarse-grained molecular potentials based on artificial neural networks and grounded in statistical mechanics. For training, we build a unique dataset of unbiased all-atom molecular dynamics simulations of approximately 9 ms for twelve different proteins with multiple secondary structure arrangements. The coarse-grained models are capable of accelerating the dynamics by more than three orders of magnitude while preserving the thermodynamics of the systems. Coarse-grained simulations identify relevant structural states in the ensemble with comparable energetics to the all-atom systems. Furthermore, we show that a single coarse-grained potential can integrate all twelve proteins and can capture experimental structural features of mutated proteins. These results indicate that machine learning coarse-grained potentials could provide a feasible approach to simulate and understand protein dynamics.
translated by 谷歌翻译
本文通过将MD势能分量引入我们的生成模型,我们利用了生成模型,并在分子动力学(MD)模拟中的问题进行了重构。通过将潜在的能量纳入从TORCHMD进入条件的生成框架,我们试图在螺旋〜$ \ Lightarrow $〜蛋白的线圈结构之间构建低势能的转化途径。我们展示了如何为条件生成模型添加额外的损失功能,其通过分子配置的潜在能量为动机,并且还提出了一种用于这种增强损耗功能的优化技术。我们的结果表明,这种额外的损失术语在合成现实分子轨迹上的好处。
translated by 谷歌翻译
粗粒(CG)分子模拟已成为研究全原子模拟无法访问的时间和长度尺度上分子过程的标准工具。参数化CG力场以匹配全原子模拟,主要依赖于力匹配或相对熵最小化,这些熵最小化分别需要来自具有全原子或CG分辨率的昂贵模拟中的许多样本。在这里,我们提出了流量匹配,这是一种针对CG力场的新训练方法,它通过利用正常流量(一种生成的深度学习方法)来结合两种方法的优势。流量匹配首先训练标准化流程以表示CG概率密度,这等同于最小化相对熵而无需迭代CG模拟。随后,该流量根据学习分布生成样品和力,以通过力匹配来训练所需的CG能量模型。即使不需要全部原子模拟的力,流程匹配就数据效率的数量级优于经典力匹配,并产生CG模型,可以捕获小蛋白质的折叠和展开过渡。
translated by 谷歌翻译
分子动力学(MD)仿真是一种强大的工具,用于了解物质的动态和结构。由于MD的分辨率是原子尺度,因此实现了使用飞秒集成的长时间模拟非常昂贵。在每个MD步骤中,执行许多可以学习和避免的冗余计算。这些冗余计算可以由像图形神经网络(GNN)的深度学习模型代替和建模。在这项工作中,我们开发了一个GNN加速分子动力学(GAMD)模型,实现了快速准确的力预测,并产生与经典MD模拟一致的轨迹。我们的研究结果表明,Gamd可以准确地预测两个典型的分子系统,Lennard-Jones(LJ)颗粒和水(LJ +静电)的动态。 GAMD的学习和推理是不可知论的,它可以在测试时间缩放到更大的系统。我们还进行了一项全面的基准测试,将GAMD的实施与生产级MD软件进行了比较,我们展示了GAMD在大规模模拟上对它们具有竞争力。
translated by 谷歌翻译
了解生物分子的动力学和热力学概况是为了了解其在机制驱动药物发现中具有重大影响的功能作用。分子动力学模拟已经常规地用于了解生物分子的构象动态和分子识别。来自分子动力学模拟产生的高维时空数据的统计分析需要识别几个低维变量,这可以描述系统的基本动态,而无需显着损失信息。在物理化学中,这些低维变量通常称为集体变量。集体变量用于产生可减少的自由能表面的表示,并计算不同亚稳态盆地之间的过渡概率。然而,复杂系统的集体变量的选择并不琐碎。集体变量范围从几何标准等距离,Dihedral角度到抽象的标准,例如诸如多个几何变量的加权线性组合的抽象线性组合。机器学习算法的出现导致越来越多地利用抽象集体变量来代表生物分子动态。在本次审查中,我将突出几个常用的集体变量的几个细微差别,范围从几何到抽象的变量。此外,我将提出一些情况,其中基于机器学习的集体变量来描述原则上的简单系统可以由几何可以描述。最后,我将提出我对人工综合情报的思考以及如何用于发现和预测来自分子动力学模拟产生的时空数据的集体变量。
translated by 谷歌翻译
We report a method to convert discrete representations of molecules to and from a multidimensional continuous representation. This model allows us to generate new molecules for efficient exploration and optimization through open-ended spaces of chemical compounds.
translated by 谷歌翻译
在这项工作中,我们介绍了亲和力-VAE:基于其相似性在多维图像数据中自动聚类和对象分类的框架。该方法扩展了$ \ beta $ -vaes的概念,其基于亲和力矩阵驱动的知情相似性损失组件。与标准的$ \ beta $ -VAE相比,该亲和力VAE能够在潜在表示中创建旋转不变的,形态上均匀的簇,并具有改进的群集分离。我们探讨了2D和3D图像数据上潜在空间的潜在分离和连续性的程度,包括模拟的生物电子冷冻术(Cryo-ET)体积,作为科学应用的一个例子。
translated by 谷歌翻译
预测分子系统的结构和能量特性是分子模拟的基本任务之一,并且具有化学,生物学和医学的用例。在过去的十年中,机器学习算法的出现影响了各种任务的分子模拟,包括原子系统的财产预测。在本文中,我们提出了一种新的方法,用于将从简单分子系统获得的知识转移到更复杂的知识中,并具有明显的原子和自由度。特别是,我们专注于高自由能状态的分类。我们的方法依赖于(i)分子的新型超图表,编码所有相关信息来表征构象的势能,以及(ii)新的消息传递和汇总层来处理和对此类超图结构数据进行预测。尽管问题的复杂性,但我们的结果表明,从三丙氨酸转移到DECA-丙氨酸系统的转移学习中,AUC的AUC为0.92。此外,我们表明,相同的转移学习方法可以用无监督的方式分组,在具有相似的自由能值的簇中,deca-丙氨酸的各种二级结构。我们的研究代表了一个概念证明,即可以设计用于分子系统的可靠传输学习模型,为预测生物学相关系统的结构和能量性能的未开发途径铺平道路。
translated by 谷歌翻译
从诸如蛋白质折叠或配体 - 受体结合如蛋白质 - 折叠或配体 - 受体结合等生物分子过程的长时间轨迹的低尺寸表示是基本的重要性和动力学模型,例如Markov建模,这些模型已经证明是有用的,用于描述这些系统的动力学。最近,引入了一种被称为vampnet的无监督机器学习技术,以以端到端的方式学习低维度表示和线性动态模型。 Vampnet基于Markov进程(VAMP)的变分方法,并依赖于神经网络来学习粗粒度的动态。在此贡献中,我们将Vampnet和图形神经网络组合生成端到端的框架,以从长时间的分子动力学轨迹有效地学习高级动态和亚稳态。该方法承载图形表示学习的优点,并使用图形消息传递操作来生成用于VAMPNET中使用的每个数据点以生成粗粒化表示的嵌入。这种类型的分子表示结果导致更高的分辨率和更可接定的Markov模型,而不是标准Vampnet,使得对生物分子过程更详细的动力学研究。我们的GraphVampNet方法也具有注意机制,以找到分类为不同亚稳态的重要残留物。
translated by 谷歌翻译
作为药物开发的必要过程,找到可以选择性地与特定蛋白质结合的药物化合物是高度挑战性和昂贵的。代表药物目标相互作用(DTI)强度的药物目标亲和力(DTA)在过去十年中在DTI预测任务中发挥了重要作用。尽管已将深度学习应用于与DTA相关的研究,但现有的解决方案忽略了分子亚结构之间的基本相关性,在分子代表学习药物化合物分子/蛋白质靶标之间。此外,传统方法缺乏DTA预测过程的解释性。这导致缺少分子间相互作用的特征信息,从而影响预测性能。因此,本文提出了一种使用交互式学习和自动编码器机制的DTA预测方法。提出的模型增强了通过药物/蛋白质分子表示学习模块捕获单个分子序列的特征信息的相应能力,并通过交互式信息学习模块补充了分子序列对之间的信息相互作用。 DTA值预测模块融合了药物目标对相互作用信息,以输出DTA的预测值。此外,从理论上讲,本文提出的方法最大化了DTA预测模型联合分布的证据下限(ELBO),从而增强了实际值和预测值之间概率分布的一致性。实验结果证实了相互变压器 - 药物目标亲和力(MT-DTA)的性能比其他比较方法更好。
translated by 谷歌翻译
基于结构的药物设计涉及发现具有对蛋白质袋的结构和化学互补性的配体分子。深度生成方法表明了在提出从划痕(De-Novo设计)的新型分子中的承诺,避免了化学空间的详尽虚拟筛选。大多数生成的de-novo模型未能包含详细的配体 - 蛋白质相互作用和3D袋结构。我们提出了一种新的监督模型,在离散的分子空间中与3D姿势共同产生分子图。分子在口袋内部构建原子原子,由来自晶体数据的结构信息引导。我们使用对接基准进行评估我们的模型,并发现引导生成将预测的结合亲和力提高了8%,并在基线上通过10%的药物相似分数提高了预测的结合亲和力。此外,我们的模型提出了具有超过一些已知配体的结合分数的分子,这可能在未来的湿式实验室研究中有用。
translated by 谷歌翻译
发现更适合特定目的的新材料是提高人类生活质量的重要问题。这里,提出了一种神经网络,其建议基于对化学语言的深刻理解符合一些所需条件的神经网络(生成的化学变压器,GCT)。 GCT中的注意机制允许更深入地了解超出化学语言本身的局限性的分子结构,这使得语义不连续性稀疏地对角色造成了注意力。通过定量评估所生成的分子的质量,研究了语言模型对逆分子设计问题的重要性。 GCT产生高度现实的化学串,满足化学和语言语法规则。从生成的字符串解析的分子同时满足多个目标属性并因单个条件集而变化。通过加速所需物质发现的过程,这些进展将有助于提高人类生活质量。
translated by 谷歌翻译
用冷冻电子显微镜(Cryo-EM)溶液中生物分子高分辨率成像的近期突破已经解锁了用于重建分子体积的新门,从而有望在其他人之间进一步进一步进展。尽管有很大的入脚,但Cryo-EM数据分析中的巨大挑战仍然是军团和错综复杂的自然间学科,需要物理学家,结构生物学家,计算机科学家,统计学家和应用数学家的见解。同时,最近的下一代卷重建算法与端到端无监督的深度学习技术相结合的生成建模已经显示了对模拟数据的有希望的结果,但在应用于实验Cryo-EM图像时仍然面临相当大的障碍。鉴于此类方法的增殖并鉴于任务的跨学科性质,我们提出了对高分辨率低分辨率建模领域的最近进步的批判性审查。目前的审查旨在(i)比较和对比这些新方法,而(ii)将它们从透视和使用科学家熟悉的术语呈现出来,在任何五个上述领域中没有Cryo-Em中没有具体的背景。审查始于引言介绍低温 - EM批量重建的深度生成模型的数学和计算挑战,同时概述了这类算法中共享的基线方法。通过这些不同的模型建立了常见的线程编织,我们提供了这些最先进的算法的实际比较,突出了它们的相对优势和劣势以及它们依赖的假设。这使我们能够识别当前方法和途径的瓶颈,以便将来的研究。
translated by 谷歌翻译
In molecular research, simulation \& design of molecules are key areas with significant implications for drug development, material science, and other fields. Current classical computational power falls inadequate to simulate any more than small molecules, let alone protein chains on hundreds of peptide. Therefore these experiment are done physically in wet-lab, but it takes a lot of time \& not possible to examine every molecule due to the size of the search area, tens of billions of dollars are spent every year in these research experiments. Molecule simulation \& design has lately advanced significantly by machine learning models, A fresh perspective on the issue of chemical synthesis is provided by deep generative models for graph-structured data. By optimising differentiable models that produce molecular graphs directly, it is feasible to avoid costly search techniques in the discrete and huge space of chemical structures. But these models also suffer from computational limitations when dimensions become huge and consume huge amount of resources. Quantum Generative machine learning in recent years have shown some empirical results promising significant advantages over classical counterparts.
translated by 谷歌翻译
准确的蛋白质结合亲和力预测在药物设计和许多其他分子识别问题中至关重要。尽管基于机器学习技术的亲和力预测取得了许多进步,但由于蛋白质 - 配体结合取决于原子和分子的动力学,它们仍然受到限制。为此,我们策划了一个包含3,218个动态蛋白质配合物的MD数据集,并进一步开发了DynaFormer,这是一个基于图的深度学习框架。 DynaFormer可以通过考虑相互作用的各种几何特征来完全捕获动态结合规则。我们的方法显示出优于迄今报告的方法。此外,我们通过将模型与基于结构的对接整合在一起,对热休克蛋白90(HSP90)进行了虚拟筛选。我们对其他基线进行了基准测试,表明我们的方法可以鉴定具有最高实验效力的分子。我们预计大规模的MD数据集和机器学习模型将形成新的协同作用,为加速药物发现和优化提供新的途径。
translated by 谷歌翻译
分子模拟的粗粒度(CG)通过将选定的原子分组为伪珠并大幅加速模拟来简化粒子的表示。但是,这种CG程序会导致信息损失,从而使准确的背景映射,即从CG坐标恢复细粒度(FG)坐标,这是一个长期存在的挑战。受生成模型和e象网络的最新进展的启发,我们提出了一个新型模型,该模型严格嵌入了背态转换的重要概率性质和几何一致性要求。我们的模型将FG的不确定性编码为不变的潜在空间,并通过Equivariant卷积将其解码为FG几何形状。为了标准化该领域的评估,我们根据分子动力学轨迹提供了三个综合基准。实验表明,我们的方法始终恢复更现实的结构,并以显着的边距胜过现有的数据驱动方法。
translated by 谷歌翻译
分子动力学(MD)模拟是各种科学领域的主力,但受到高计算成本的限制。基于学习的力场在加速AB-Initio MD模拟方面取得了重大进展,但对于许多需要长期MD仿真的现实世界应用程序仍然不够快。在本文中,我们采用了一种不同的机器学习方法,使用图形群集将物理系统粗糙化,并使用图形神经网络使用非常大的时间整合步骤对系统演变进行建模。一个新型的基于分数的GNN改进模块解决了长期模拟不稳定性的长期挑战。尽管仅接受了简短的MD轨迹数据训练,但我们学到的模拟器仍可以推广到看不见的新型系统,并比训练轨迹更长的时间。需要10-100 ns级的长时间动力学的属性可以在多个刻度级的速度上准确恢复,而不是经典的力场。我们证明了方法对两个现实的复杂系统的有效性:(1)隐式溶剂中的单链粗粒聚合物; (2)多组分锂离子聚合物电解质系统。
translated by 谷歌翻译
在这项工作中,我们通过使用卷积神经网络,基于深度学习方法的系统提供了一种基于蛋白质数据库中包含的蛋白质描述来分类氨基酸的蛋白质链。每个蛋白质在其XML格式中的文件中的化学物理 - 几何属性中完全描述。这项工作的目的是设计一个原型的深层学习机械,用于收集和管理大量数据,并通过其应用于氨基酸序列的分类来验证。我们设想将所述方法应用于与结构性质和相似性有关的生物分子中的更通用分类问题。
translated by 谷歌翻译
创建视频是为了表达情感,交换信息和分享经验。视频合成很长时间以来一直吸引了研究人员。尽管视觉合成的进步驱动了迅速的进展,但大多数现有研究都集中在提高框架的质量和之间的过渡上,而在生成更长的视频方面几乎没有取得进展。在本文中,我们提出了一种基于3D-VQGAN和Transformers的方法,以生成具有数千帧的视频。我们的评估表明,我们的模型在16架视频剪辑中培训了来自UCF-101,Sky TimeLapse和Taichi-HD数据集等标准基准测试片段,可以生成多样化,连贯和高质量的长视频。我们还展示了我们通过将时间信息与文本和音频结合在一起来生成有意义的长视频的方法的条件扩展。可以在https://songweige.github.io/projects/tats/index.html上找到视频和代码。
translated by 谷歌翻译