实例歧视对比学习(CL)在学习可转移表示方面取得了重大成功。与CL损失的温度$ \ tau $相关的硬度感知的属性被确定为在自动集中在硬性阴性样品上起着至关重要的作用。但是,先前的工作还证明了CL损失的均匀性困境(UTD)存在,这将导致意外的性能降解。具体而言,较小的温度有助于学习可分离的嵌入,但对语义相关样品的耐受性较小,这可能导致次优的嵌入空间,反之亦然。在本文中,我们提出了一种模型感的对比学习(MACL)策略来逃避UTD。对于训练不足的阶段,锚固的高相似性区域包含潜在的阳性样品的可能性较小。因此,在这些阶段采用较小的温度可以对硬性阴性样品施加更大的惩罚强度,以改善CL模型的歧视。相反,由于对潜在的阳性样品的耐受性,训练有素的相位较高的温度有助于探索语义结构。在实施过程中,MACL中的温度旨在适应反映CL模型置信度的对齐属性。此外,我们重新审查了为什么对比度学习需要在统一梯度降低的视角中大量负面样本。基于MACL和这些分析,在这项工作中提出了新的CL损失,以改善批量尺寸少量的学说和培训。
translated by 谷歌翻译
对比学习(CL)是自我监督学习(SSL)最成功的范式之一。它以原则上的方式考虑了两个增强的“视图”,同一图像是正面的,将其拉近,所有其他图像都是负面的。但是,在基于CL的技术的令人印象深刻的成功之后,它们的配方通常依赖于重型设置,包括大型样品批次,广泛的培训时代等。因此,我们有动力解决这些问题并建立一个简单,高效但有竞争力的问题对比学习的基线。具体而言,我们从理论和实证研究中鉴定出对广泛使用的Infonce损失的显着负阳性耦合(NPC)效应,从而导致有关批处理大小的不合适的学习效率。通过消除NPC效应,我们提出了脱钩的对比度学习(DCL)损失,该损失从分母中删除了积极的术语,并显着提高了学习效率。 DCL对竞争性表现具有较小的对亚最佳超参数的敏感性,既不需要SIMCLR中的大批量,Moco中的动量编码或大型时代。我们以各种基准来证明,同时表现出对次优的超参数敏感的鲁棒性。值得注意的是,具有DCL的SIMCLR在200个时期内使用批次尺寸256实现68.2%的Imagenet-1K TOP-1精度,在预训练中的表现优于其SIMCLR基线6.4%。此外,DCL可以与SOTA对比度学习方法NNCLR结合使用,以达到72.3%的Imagenet-1k Top-1精度,在400个时期的512批次大小中,这代表了对比学习中的新SOTA。我们认为DCL为将来的对比SSL研究提供了宝贵的基准。
translated by 谷歌翻译
无监督的对比度学习(UCL)是一种自我监督的学习技术,旨在通过将正面样本彼此接近,同时将负面样本推到嵌入空间中远处,以学习有用的表示功能。为了提高UCL的性能,几项作品引入了旨在选择“硬”阴性样本与UCL中使用的随机采样策略相比,旨在选择“硬”阴性样本的硬性阴性对比度学习(H-UCL)。在另一种方法中,在假设标签信息可用的假设下,有监督的对比学习(SCL)最近通过将UCL扩展到完全监督的环境来开发。在本文中,由于硬性采样策略在H-UCL中的有效性以及标签信息在SCL中的有用性的启发性,我们提出了一个称为硬性负责监督的对比度学习(H-SCL)的对比学习框架。我们的数值结果证明了H-SCL在几个图像数据集上对SCL和H-UCL的有效性。另外,从理论上讲,在某些条件下,H-SCL的目标函数可以受H-UCL的目标函数的界定,而不是由UCL的目标函数界定。因此,将H-UCL损失最小化可以作为最小化H-SCL损失的代理,而最小化UCL损失不能。正如我们数值表明H-SCL优于其他对比学习方法时,我们的理论结果(通过H-UCL损失界限H-SCL损失)有助于解释为什么H-UCL在实践中优于UCL。
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
通过对比学习,自我监督学习最近在视觉任务中显示了巨大的潜力,这旨在在数据集中区分每个图像或实例。然而,这种情况级别学习忽略了实例之间的语义关系,有时不希望地从语义上类似的样本中排斥锚,被称为“假否定”。在这项工作中,我们表明,对于具有更多语义概念的大规模数据集来说,虚假否定的不利影响更为重要。为了解决这个问题,我们提出了一种新颖的自我监督的对比学习框架,逐步地检测并明确地去除假阴性样本。具体地,在训练过程之后,考虑到编码器逐渐提高,嵌入空间变得更加语义结构,我们的方法动态地检测增加的高质量假否定。接下来,我们讨论两种策略,以明确地在对比学习期间明确地消除检测到的假阴性。广泛的实验表明,我们的框架在有限的资源设置中的多个基准上表现出其他自我监督的对比学习方法。
translated by 谷歌翻译
在自我监督对比度学习范式下,小型模型表现得很差。现有方法通常采用大型现成模型,通过蒸馏将知识转移到小型。尽管有效率,但由于部署大型模型的巨大计算费用,蒸馏基方法可能不适合某些资源限制方案。在本文中,我们研究了没有蒸馏信号的自我监督小型模型的问题。我们首先评估小型模型的代表空间,并进行两个不可忽略的观察:(i)小型型号可以完成借口任务,而无需过度拟合,尽管它们有限,并且(ii)他们普遍遭受聚类问题的问题。然后我们验证了多个被认为减轻过分聚类现象的假设。最后,我们结合了验证的技术,提高了五种小型架构的基线性能,具有相当大的边缘,这表明即使没有蒸馏信号,培训小自我监督的对比模型也是可行的。该代码可在\ texit {https://github.com/wodeice/sl-small}中获得。
translated by 谷歌翻译
虽然自我监督的表示学习(SSL)在大型模型中证明是有效的,但在遵循相同的解决方案时,轻量级模型中的SSL和监督方法之间仍然存在巨大差距。我们深入研究这个问题,发现轻量级模型在简单地执行实例对比时易于在语义空间中崩溃。为了解决这个问题,我们提出了一种与关系知识蒸馏(REKD)的关系方面的对比范例。我们介绍一个异构教师,明确地挖掘语义信息并将新颖的关系知识转移到学生(轻量级模型)。理论分析支持我们对案例对比度的主要担忧,验证了我们关系的对比学习的有效性。广泛的实验结果还表明,我们的方法达到了多种轻量级模型的显着改进。特别是,亚历谢的线性评估显然将目前的最先进从44.7%提高到50.1%,这是第一个接近监督50.5%的工作。代码将可用。
translated by 谷歌翻译
对比度学习重要的是什么?我们认为,对比度学习在很大程度上取决于信息丰富的特征或“硬”(正面或负面)特征。早期作品包括通过应用复杂的数据增强和较大的批量尺寸或内存库以及最近的作品设计精心设计的采样方法来探索信息丰富的功能,包括更有信息的功能。探索此类功能的关键挑战是,通过应用随机数据增强来生成源多视图数据,这使得始终在增强数据中添加有用的信息是不可行的。因此,从这种增强数据中学到的功能的信息有限。作为回应,我们建议直接增强潜在空间中的特征,从而在没有大量输入数据的情况下学习判别性表示。我们执行一种元学习技术来构建通过考虑编码器的性能来更新其网络参数的增强生成器。但是,输入数据不足可能会导致编码器学习折叠功能,从而导致增强发生器故障。在目标函数中进一步添加了新的注入边缘的正则化,以避免编码器学习退化映射。为了对比一个梯度背部传播步骤中的所有特征,我们采用了提出的优化驱动的统一对比损失,而不是常规的对比损失。从经验上讲,我们的方法在几个基准数据集上实现了最新的结果。
translated by 谷歌翻译
对比度学习(CL)方法有效地学习数据表示,而无需标记监督,在该方法中,编码器通过单VS-MONY SOFTMAX跨透镜损失将每个正样本在多个负样本上对比。通过利用大量未标记的图像数据,在Imagenet上预先训练时,最近的CL方法获得了有希望的结果,这是一个具有均衡图像类的曲制曲线曲线集。但是,当对野外图像进行预训练时,它们往往会产生较差的性能。在本文中,为了进一步提高CL的性能并增强其对未经保育数据集的鲁棒性,我们提出了一种双重的CL策略,该策略将其内部查询的正(负)样本对比,然后才能决定多么强烈地拉动(推)。我们通过对比度吸引力和对比度排斥(CACR)意识到这一策略,这使得查询不仅发挥了更大的力量来吸引更遥远的正样本,而且可以驱除更接近的负面样本。理论分析表明,CACR通过考虑正/阴性样品的分布之间的差异来概括CL的行为,而正/负样品的分布通常与查询独立进行采样,并且它们的真实条件分布给出了查询。我们证明了这种独特的阳性吸引力和阴性排斥机制,这有助于消除在数据集的策划较低时尤其有益于数据及其潜在表示的统一先验分布的需求。对许多标准视觉任务进行的大规模大规模实验表明,CACR不仅在表示学习中的基准数据集上始终优于现有的CL方法,而且在对不平衡图像数据集进行预训练时,还表现出更好的鲁棒性。
translated by 谷歌翻译
最近对比学习在从未标记数据学习视觉表现方面表现出显着进展。核心思想正在培训骨干,以不变的实例的不同增强。虽然大多数方法只能最大化两个增强数据之间的特征相似性,但我们进一步产生了更具挑战性的训练样本,并强迫模型继续预测这些硬样品上的判别表示。在本文中,我们提出了Mixsiam,传统暹罗网络的混合方法。一方面,我们将实例的两个增强图像输入到骨干,并通过执行两个特征的元素最大值来获得辨别结果。另一方面,我们将这些增强图像的混合物作为输入,并期望模型预测接近鉴别的表示。以这种方式,模型可以访问实例的更多变体数据样本,并继续预测它们的不变判别表示。因此,与先前的对比学习方法相比,学习模型更加强大。大型数据集的广泛实验表明,Mixsiam稳步提高了基线,并通过最先进的方法实现了竞争结果。我们的代码即将发布。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
自我监督的学习最近在没有人类注释的情况下在表示学习方面取得了巨大的成功。主要方法(即对比度学习)通常基于实例歧视任务,即单个样本被视为独立类别。但是,假定所有样品都是不同的,这与普通视觉数据集中类似样品的自然分组相矛盾,例如同一狗的多个视图。为了弥合差距,本文提出了一种自适应方法,该方法引入了软样本间关系,即自适应软化对比度学习(ASCL)。更具体地说,ASCL将原始实例歧视任务转换为多实体软歧视任务,并自适应地引入样本间关系。作为现有的自我监督学习框架的有效简明的插件模块,ASCL就性能和效率都实现了多个基准的最佳性能。代码可从https://github.com/mrchenfeng/ascl_icpr2022获得。
translated by 谷歌翻译
自我监督的方法(SSL)通过最大化两个增强视图之间的相互信息,裁剪是一种巨大的成功,其中裁剪是一种流行的增强技术。裁剪区域广泛用于构造正对,而裁剪后的左侧区域很少被探讨在现有方法中,尽管它们在一起构成相同的图像实例并且两者都有助于对类别的描述。在本文中,我们首次尝试从完整的角度来展示两种地区的重要性,并提出称为区域对比学习(RegionCl)的简单但有效的借口任务。具体地,给定两个不同的图像,我们随机从具有相同大小的每个图像随机裁剪区域(称为粘贴视图)并将它们交换以分别与左区域(称为CANVAS视图)一起组成两个新图像。然后,可以根据以下简单标准提供对比度对,即,每个视图是(1)阳性,其视图从相同的原始图像增强,并且与从其他图像增强的视图增强的视图。对于对流行的SSL方法进行微小的修改,RegionCL利用这些丰富的对并帮助模型区分来自画布和粘贴视图的区域特征,因此学习更好的视觉表示。 Imagenet,Coco和Citycapes上的实验表明,RegionCL通过大型边缘改善Moco V2,Densecl和Simsiam,并在分类,检测和分割任务上实现最先进的性能。代码将在https://github.com/annbless/regioncl.git上获得。
translated by 谷歌翻译
对比性自我监督学习(CSL)是一种实用解决方案,它以无监督的方法从大量数据中学习有意义的视觉表示。普通的CSL将从神经网络提取的特征嵌入到特定的拓扑结构上。在训练进度期间,对比度损失将同一输入的不同视图融合在一起,同时将不同输入分开的嵌入。 CSL的缺点之一是,损失项需要大量的负样本才能提供更好的相互信息理想。但是,通过较大的运行批量大小增加负样本的数量也增强了错误的负面影响:语义上相似的样品与锚分开,因此降低了下游性能。在本文中,我们通过引入一个简单但有效的对比学习框架来解决这个问题。关键的见解是使用暹罗风格的度量损失来匹配原型内特征,同时增加了原型间特征之间的距离。我们对各种基准测试进行了广泛的实验,其中结果证明了我们方法在提高视觉表示质量方面的有效性。具体而言,我们使用线性探针的无监督预训练的Resnet-50在Imagenet-1K数据集上超过了受访的训练有素的版本。
translated by 谷歌翻译
在本文中,我们从优化的角度研究了对比度学习,旨在分析和解决现有的对比学习方法的基本问题,这些方法依靠大批量大小或大型矢量词典。我们考虑了对比度学习的全球目标,该目标将每个正对与锚点的所有负对对比。从优化的角度来看,我们解释了为什么诸如SIMCLR之类的现有方法需要大批量大小才能获得令人满意的结果。为了消除此类要求,我们提出了一种记忆有效的随机优化算法,用于求解名为SOGCLR的对比度学习的全局目标。我们表明,在足够数量的迭代次数之后,在合理条件下,其优化误差可以忽略不计,或者对于稍有不同的全局对比目标而减少。从经验上讲,我们证明具有小批量大小的SOGCLR(例如256)可以在Imagenet-1k上的自我监督学习任务上获得与具有较大批量大小(例如8192)的SIMCLR相似的性能。我们还试图证明所提出的优化技术是通用的,可以应用于解决其他对比损失,例如双峰对比度学习的双向对比损失。提出的方法是在我们开源的图书馆libauc(www.libauc.org)中实现的。
translated by 谷歌翻译
无教师的在线知识蒸馏(KD)旨在培训多个学生模型的合奏,并彼此提炼知识。尽管现有的在线KD方法实现了理想的性能,但它们通常专注于阶级概率作为核心知识类型,而忽略了宝贵的特征代表性信息。我们为在线KD提供了一个相互的对比学习(MCL)框架。 MCL的核心思想是以在线方式进行对比分布的相互交互和对比度分布的转移。我们的MCL可以汇总跨网络嵌入信息,并最大化两个网络之间的相互信息的下限。这使每个网络能够从他人那里学习额外的对比知识,从而提供更好的特征表示形式,从而提高视觉识别任务的性能。除最后一层外,我们还将MCL扩展到辅助特征细化模块辅助的几个中间层。这进一步增强了在线KD的表示能力。关于图像分类和转移学习到视觉识别任务的实验表明,MCL可以针对最新的在线KD方法带来一致的性能提高。优势表明,MCL可以指导网络生成更好的特征表示。我们的代码可在https://github.com/winycg/mcl上公开获取。
translated by 谷歌翻译
深度神经网络在严重的类不平衡数据集上的表现不佳。鉴于对比度学习的有希望的表现,我们提出了重新平衡的暹罗对比度采矿(RESCOM)来应对不平衡的识别。基于数学分析和仿真结果,我们声称监督的对比学习在原始批次和暹罗批次水平上都遭受双重失衡问题,这比长尾分类学习更为严重。在本文中,在原始批处理水平上,我们引入了级别平衡的监督对比损失,以分配不同类别的自适应权重。在暹罗批次级别,我们提出了一个级别平衡的队列,该队列维持所有类的键相同。此外,我们注意到,相对于对比度逻辑的不平衡对比损失梯度可以将其分解为阳性和负面因素,易于阳性和易于负面因素将使对比度梯度消失。我们建议有监督的正面和负面对挖掘,以获取信息对的对比度计算并改善表示形式学习。最后,为了大致最大程度地提高两种观点之间的相互信息,我们提出了暹罗平衡的软性软件,并与一阶段训练的对比损失结合。广泛的实验表明,在多个长尾识别基准上,RESCON优于先前的方法。我们的代码和模型可公开可用:https://github.com/dvlab-research/rescom。
translated by 谷歌翻译
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks.
translated by 谷歌翻译
作为一种成功的自我监督学习方法,对比学习旨在学习输入样本扭曲之间共享的不变信息。尽管对比度学习在抽样策略和架构设计方面取得了持续的进步,但仍然存在两个持续的缺陷:任务 - 核定信息的干扰和样本效率低下,这与琐碎的恒定解决方案的反复存在有关。从维度分析的角度来看,我们发现尺寸的冗余和尺寸混杂因素是现象背后的内在问题,并提供了实验证据来支持我们的观点。我们进一步提出了一种简单而有效的方法metamask,这是元学习学到的维度面膜的缩写,以学习反对维度冗余和混杂因素的表示形式。 MetAmask采用冗余技术来解决尺寸的冗余问题,并创新地引入了尺寸掩模,以减少包含混杂因子的特定维度的梯度效应,该效果通过采用元学习范式进行培训,以改善掩盖掩盖性能的目标典型的自我监督任务的表示。与典型的对比方法相比,我们提供了坚实的理论分析以证明元掩体可以获得下游分类的更严格的风险范围。从经验上讲,我们的方法在各种基准上实现了最先进的性能。
translated by 谷歌翻译