虽然自我监督的表示学习(SSL)在大型模型中证明是有效的,但在遵循相同的解决方案时,轻量级模型中的SSL和监督方法之间仍然存在巨大差距。我们深入研究这个问题,发现轻量级模型在简单地执行实例对比时易于在语义空间中崩溃。为了解决这个问题,我们提出了一种与关系知识蒸馏(REKD)的关系方面的对比范例。我们介绍一个异构教师,明确地挖掘语义信息并将新颖的关系知识转移到学生(轻量级模型)。理论分析支持我们对案例对比度的主要担忧,验证了我们关系的对比学习的有效性。广泛的实验结果还表明,我们的方法达到了多种轻量级模型的显着改进。特别是,亚历谢的线性评估显然将目前的最先进从44.7%提高到50.1%,这是第一个接近监督50.5%的工作。代码将可用。
translated by 谷歌翻译
通过对比学习,自我监督学习最近在视觉任务中显示了巨大的潜力,这旨在在数据集中区分每个图像或实例。然而,这种情况级别学习忽略了实例之间的语义关系,有时不希望地从语义上类似的样本中排斥锚,被称为“假否定”。在这项工作中,我们表明,对于具有更多语义概念的大规模数据集来说,虚假否定的不利影响更为重要。为了解决这个问题,我们提出了一种新颖的自我监督的对比学习框架,逐步地检测并明确地去除假阴性样本。具体地,在训练过程之后,考虑到编码器逐渐提高,嵌入空间变得更加语义结构,我们的方法动态地检测增加的高质量假否定。接下来,我们讨论两种策略,以明确地在对比学习期间明确地消除检测到的假阴性。广泛的实验表明,我们的框架在有限的资源设置中的多个基准上表现出其他自我监督的对比学习方法。
translated by 谷歌翻译
尽管自我监督的表示学习(SSL)受到社区的广泛关注,但最近的研究认为,当模型大小降低时,其性能将遭受悬崖的下降。当前的方法主要依赖于对比度学习来训练网络,在这项工作中,我们提出了一种简单而有效的蒸馏对比学习(Disco),以大幅度减轻问题。具体而言,我们发现主流SSL方法获得的最终嵌入包含最富有成果的信息,并建议提炼最终的嵌入,以最大程度地将教师的知识传播到轻量级模型中,通过约束学生的最后嵌入与学生的最后嵌入,以使其与该模型保持一致。老师。此外,在实验中,我们发现存在一种被称为蒸馏瓶颈的现象,并存在以扩大嵌入尺寸以减轻此问题。我们的方法在部署过程中不会向轻型模型引入任何额外的参数。实验结果表明,我们的方法在所有轻型模型上都达到了最先进的作用。特别是,当使用RESNET-101/RESNET-50用作教师教授有效网络-B0时,Imagenet上有效网络B0的线性结果非常接近Resnet-101/Resnet-50,但是有效网络B0的参数数量仅为9.4 \%/16.3 \%Resnet-101/resnet-50。代码可从https:// github获得。 com/yuting-gao/disco-pytorch。
translated by 谷歌翻译
This paper presents Prototypical Contrastive Learning (PCL), an unsupervised representation learning method that bridges contrastive learning with clustering. PCL not only learns low-level features for the task of instance discrimination, but more importantly, it encodes semantic structures discovered by clustering into the learned embedding space. Specifically, we introduce prototypes as latent variables to help find the maximum-likelihood estimation of the network parameters in an Expectation-Maximization framework. We iteratively perform E-step as finding the distribution of prototypes via clustering and M-step as optimizing the network via contrastive learning. We propose ProtoNCE loss, a generalized version of the InfoNCE loss for contrastive learning, which encourages representations to be closer to their assigned prototypes. PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks with substantial improvement in low-resource transfer learning. Code and pretrained models are available at https://github.com/salesforce/PCL.
translated by 谷歌翻译
对比性自我监督学习(CSL)是一种实用解决方案,它以无监督的方法从大量数据中学习有意义的视觉表示。普通的CSL将从神经网络提取的特征嵌入到特定的拓扑结构上。在训练进度期间,对比度损失将同一输入的不同视图融合在一起,同时将不同输入分开的嵌入。 CSL的缺点之一是,损失项需要大量的负样本才能提供更好的相互信息理想。但是,通过较大的运行批量大小增加负样本的数量也增强了错误的负面影响:语义上相似的样品与锚分开,因此降低了下游性能。在本文中,我们通过引入一个简单但有效的对比学习框架来解决这个问题。关键的见解是使用暹罗风格的度量损失来匹配原型内特征,同时增加了原型间特征之间的距离。我们对各种基准测试进行了广泛的实验,其中结果证明了我们方法在提高视觉表示质量方面的有效性。具体而言,我们使用线性探针的无监督预训练的Resnet-50在Imagenet-1K数据集上超过了受访的训练有素的版本。
translated by 谷歌翻译
无教师的在线知识蒸馏(KD)旨在培训多个学生模型的合奏,并彼此提炼知识。尽管现有的在线KD方法实现了理想的性能,但它们通常专注于阶级概率作为核心知识类型,而忽略了宝贵的特征代表性信息。我们为在线KD提供了一个相互的对比学习(MCL)框架。 MCL的核心思想是以在线方式进行对比分布的相互交互和对比度分布的转移。我们的MCL可以汇总跨网络嵌入信息,并最大化两个网络之间的相互信息的下限。这使每个网络能够从他人那里学习额外的对比知识,从而提供更好的特征表示形式,从而提高视觉识别任务的性能。除最后一层外,我们还将MCL扩展到辅助特征细化模块辅助的几个中间层。这进一步增强了在线KD的表示能力。关于图像分类和转移学习到视觉识别任务的实验表明,MCL可以针对最新的在线KD方法带来一致的性能提高。优势表明,MCL可以指导网络生成更好的特征表示。我们的代码可在https://github.com/winycg/mcl上公开获取。
translated by 谷歌翻译
现有的深度聚类方法依赖于对比学习的对比学习,这需要否定例子来形成嵌入空间,其中所有情况都处于良好分离状态。但是,否定的例子不可避免地引起阶级碰撞问题,损害了群集的表示学习。在本文中,我们探讨了对深度聚类的非对比表示学习,被称为NCC,其基于Byol,一种没有负例的代表性方法。首先,我们建议将一个增强的实例与嵌入空间中的另一个视图的邻居对齐,称为正抽样策略,该域避免了由否定示例引起的类碰撞问题,从而提高了集群内的紧凑性。其次,我们建议鼓励在所有原型中的一个原型和均匀性的两个增强视图之间的对准,命名的原型是原型的对比损失或protocl,这可以最大化簇间距离。此外,我们在期望 - 最大化(EM)框架中制定了NCC,其中E-Step利用球面K手段来估计实例的伪标签和来自目标网络的原型的分布,并且M-Step利用了所提出的损失优化在线网络。结果,NCC形成了一个嵌入空间,其中所有集群都处于分离良好,而内部示例都很紧凑。在包括ImageNet-1K的几个聚类基准数据集上的实验结果证明了NCC优于最先进的方法,通过显着的余量。
translated by 谷歌翻译
对比度学习最近在无监督的视觉表示学习中显示出巨大的潜力。在此轨道中的现有研究主要集中于图像内不变性学习。学习通常使用丰富的图像内变换来构建正对,然后使用对比度损失最大化一致性。相反,相互影响不变性的优点仍然少得多。利用图像间不变性的一个主要障碍是,尚不清楚如何可靠地构建图像间的正对,并进一步从它们中获得有效的监督,因为没有配对注释可用。在这项工作中,我们提出了一项全面的实证研究,以更好地了解从三个主要组成部分的形象间不变性学习的作用:伪标签维护,采样策略和决策边界设计。为了促进这项研究,我们引入了一个统一的通用框架,该框架支持无监督的内部和间形内不变性学习的整合。通过精心设计的比较和分析,揭示了多个有价值的观察结果:1)在线标签收敛速度比离线标签更快; 2)半硬性样品比硬否定样品更可靠和公正; 3)一个不太严格的决策边界更有利于形象间的不变性学习。借助所有获得的食谱,我们的最终模型(即InterCLR)对多个标准基准测试的最先进的内图内不变性学习方法表现出一致的改进。我们希望这项工作将为设计有效的无监督间歇性不变性学习提供有用的经验。代码:https://github.com/open-mmlab/mmselfsup。
translated by 谷歌翻译
Recent research has reported a performance degradation in self-supervised contrastive learning for specially designed efficient networks, such as MobileNet and EfficientNet. A common practice to address this problem is to introduce a pretrained contrastive teacher model and train the lightweight networks with distillation signals generated by the teacher. However, it is time and resource consuming to pretrain a teacher model when it is not available. In this work, we aim to establish a stronger baseline for lightweight contrastive models without using a pretrained teacher model. Specifically, we show that the optimal recipe for efficient models is different from that of larger models, and using the same training settings as ResNet50, as previous research does, is inappropriate. Additionally, we observe a common issu e in contrastive learning where either the positive or negative views can be noisy, and propose a smoothed version of InfoNCE loss to alleviate this problem. As a result, we successfully improve the linear evaluation results from 36.3\% to 62.3\% for MobileNet-V3-Large and from 42.2\% to 65.8\% for EfficientNet-B0 on ImageNet, closing the accuracy gap to ResNet50 with $5\times$ fewer parameters. We hope our research will facilitate the usage of lightweight contrastive models.
translated by 谷歌翻译
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or "views") of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a "swapped" prediction mechanism where we predict the code of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
translated by 谷歌翻译
这项工作旨在改善具有自我监督的实例检索。我们发现使用最近开发的自我监督(SSL)学习方法(如SIMCLR和MOCO)的微调未能提高实例检索的性能。在这项工作中,我们确定了例如检索的学习表示应该是不变的视点和背景等的大变化,而当前SSL方法应用的自增强阳性不能为学习强大的实例级别表示提供强大的信号。为了克服这个问题,我们提出了一种在\ texit {实例级别}对比度上建立的新SSL方法,以通过动态挖掘迷你批次和存储库来学习类内不变性训练。广泛的实验表明,insclr在实例检索上实现了比最先进的SSL方法更类似或更好的性能。代码可在https://github.com/zeludeng/insclr获得。
translated by 谷歌翻译
最近先进的无监督学习方法使用暹罗样框架来比较来自同一图像的两个“视图”以进行学习表示。使两个视图独特是一种保证无监督方法可以学习有意义的信息的核心。但是,如果使用用于生成两个视图的增强不足够强度,此类框架有时会易碎过度装备,导致培训数据上的过度自信的问题。此缺点会阻碍模型,从学习微妙方差和细粒度信息。为了解决这个问题,在这项工作中,我们的目标是涉及在无监督的学习中的标签空间上的距离概念,并让模型通过混合输入数据空间来了解正面或负对对之间的柔和程度,以便协同工作输入和损耗空间。尽管其概念性简单,我们凭借解决的解决方案 - 无监督图像混合(UN-MIX),我们可以从转换的输入和相应的新标签空间中学习Subtler,更强大和广义表示。广泛的实验在CiFar-10,CiFar-100,STL-10,微小的想象和标准想象中进行了流行的无人监督方法SIMCLR,BYOL,MOCO V1和V2,SWAV等。我们所提出的图像混合物和标签分配策略可以获得一致的改进在完全相同的超参数和基础方法的培训程序之后1〜3%。代码在https://github.com/szq0214/un-mix上公开提供。
translated by 谷歌翻译
Contrastive learning has become a key component of self-supervised learning approaches for computer vision. By learning to embed two augmented versions of the same image close to each other and to push the embeddings of different images apart, one can train highly transferable visual representations. As revealed by recent studies, heavy data augmentation and large sets of negatives are both crucial in learning such representations. At the same time, data mixing strategies, either at the image or the feature level, improve both supervised and semi-supervised learning by synthesizing novel examples, forcing networks to learn more robust features. In this paper, we argue that an important aspect of contrastive learning, i.e. the effect of hard negatives, has so far been neglected. To get more meaningful negative samples, current top contrastive self-supervised learning approaches either substantially increase the batch sizes, or keep very large memory banks; increasing memory requirements, however, leads to diminishing returns in terms of performance. We therefore start by delving deeper into a top-performing framework and show evidence that harder negatives are needed to facilitate better and faster learning. Based on these observations, and motivated by the success of data mixing, we propose hard negative mixing strategies at the feature level, that can be computed on-the-fly with a minimal computational overhead. We exhaustively ablate our approach on linear classification, object detection, and instance segmentation and show that employing our hard negative mixing procedure improves the quality of visual representations learned by a state-of-the-art self-supervised learning method.Project page: https://europe.naverlabs.com/mochi 34th Conference on Neural Information Processing Systems (NeurIPS 2020),
translated by 谷歌翻译
Contrastive representation learning has proven to be an effective self-supervised learning method for images and videos. Most successful approaches are based on Noise Contrastive Estimation (NCE) and use different views of an instance as positives that should be contrasted with other instances, called negatives, that are considered as noise. However, several instances in a dataset are drawn from the same distribution and share underlying semantic information. A good data representation should contain relations between the instances, or semantic similarity and dissimilarity, that contrastive learning harms by considering all negatives as noise. To circumvent this issue, we propose a novel formulation of contrastive learning using semantic similarity between instances called Similarity Contrastive Estimation (SCE). Our training objective is a soft contrastive one that brings the positives closer and estimates a continuous distribution to push or pull negative instances based on their learned similarities. We validate empirically our approach on both image and video representation learning. We show that SCE performs competitively with the state of the art on the ImageNet linear evaluation protocol for fewer pretraining epochs and that it generalizes to several downstream image tasks. We also show that SCE reaches state-of-the-art results for pretraining video representation and that the learned representation can generalize to video downstream tasks.
translated by 谷歌翻译
在深度学习研究中,自学学习(SSL)引起了极大的关注,引起了计算机视觉和遥感社区的兴趣。尽管计算机视觉取得了很大的成功,但SSL在地球观测领域的大部分潜力仍然锁定。在本文中,我们对在遥感的背景下为计算机视觉的SSL概念和最新发展提供了介绍,并回顾了SSL中的概念和最新发展。此外,我们在流行的遥感数据集上提供了现代SSL算法的初步基准,从而验证了SSL在遥感中的潜力,并提供了有关数据增强的扩展研究。最后,我们确定了SSL未来研究的有希望的方向的地球观察(SSL4EO),以铺平了两个领域的富有成效的相互作用。
translated by 谷歌翻译
我们解决了几次拍摄语义分割(FSS)的问题,该问题旨在通过一些带有一些注释的样本分段为目标图像中的新型类对象。尽管通过结合基于原型的公制学习来进行最近的进步,但由于其特征表示差,现有方法仍然显示出在极端内部对象变化和语义相似的类别对象下的有限性能。为了解决这个问题,我们提出了一种针对FSS任务定制的双重原型对比学习方法,以有效地捕获代表性的语义。主要思想是通过增加阶级距离来鼓励原型更差异,同时减少了原型特征空间中的课堂距离。为此,我们首先向类别特定的对比丢失丢失具有动态原型字典,该字典字典存储在训练期间的类感知原型,从而实现相同的类原型和不同的类原型是不同的。此外,我们通过压缩每集内语义类的特征分布来提高类别无话的对比损失,以提高未经看不见的类别的概念能力。我们表明,所提出的双重原型对比学习方法优于Pascal-5i和Coco-20i数据集的最先进的FSS方法。该代码可用于:https://github.com/kwonjunn01/dpcl1。
translated by 谷歌翻译
现有的少量学习(FSL)方法依赖于具有大型标记数据集的培训,从而阻止它们利用丰富的未标记数据。从信息理论的角度来看,我们提出了一种有效的无监督的FSL方法,并以自学意义进行学习表示。遵循信息原理,我们的方法通过捕获数据的内在结构来学习全面的表示。具体而言,我们以低偏置的MI估计量来最大化实例及其表示的相互信息(MI),以执行自我监督的预训练。我们的自我监督模型对所见类别的可区分特征的监督预训练没有针对可见的阶级的偏见,从而对看不见的类别进行了更好的概括。我们解释说,受监督的预训练和自我监督的预训练实际上正在最大化不同的MI目标。进一步进行了广泛的实验,以通过各种训练环境分析其FSL性能。令人惊讶的是,结果表明,在适当条件下,自我监管的预训练可以优于监督预训练。与最先进的FSL方法相比,我们的方法在没有基本类别的任何标签的情况下,在广泛使用的FSL基准上实现了可比的性能。
translated by 谷歌翻译
我们专注于更好地理解增强不变代表性学习的关键因素。我们重新访问moco v2和byol,并试图证明以下假设的真实性:不同的框架即使具有相同的借口任务也会带来不同特征的表示。我们建立了MoCo V2和BYOL之间公平比较的第一个基准,并观察:(i)复杂的模型配置使得可以更好地适应预训练数据集; (ii)从实现竞争性转移表演中获得的预训练和微调阻碍模型的优化策略不匹配。鉴于公平的基准,我们进行进一步的研究并发现网络结构的不对称性赋予对比框架在线性评估协议下正常工作,同时可能会损害长尾分类任务的转移性能。此外,负样本并不能使模型更明智地选择数据增强,也不会使不对称网络结构结构。我们相信我们的发现为将来的工作提供了有用的信息。
translated by 谷歌翻译
上下文信息对于各种计算机视觉任务至关重要,以前的作品通常设计插件模块和结构损失,以有效地提取和汇总全局上下文。这些方法利用优质标签来优化模型,但忽略了精细训练的特征也是宝贵的训练资源,可以将优选的分布引入硬像素(即错误分类的像素)。受到无监督范式的对比学习的启发,我们以监督的方式应用了对比度损失,并重新设计了损失功能,以抛弃无监督学习的刻板印象(例如,积极和负面的不平衡,对锚定计算的混淆)。为此,我们提出了阳性阴性相等的对比损失(PNE损失),这增加了阳性嵌入对锚的潜在影响,并同时对待阳性和阴性样本对。 PNE损失可以直接插入现有的语义细分框架中,并以可忽视的额外计算成本导致出色的性能。我们利用许多经典的分割方法(例如,DeepLabv3,Ocrnet,Upernet)和骨干(例如Resnet,Hrnet,Swin Transformer)进行全面的实验,并在两个基准数据集(例如,例如,例如,,例如城市景观和可可固定)。我们的代码将公开
translated by 谷歌翻译
自我监督学习(SSL)已取得了有希望的下游表现。但是,当面临现实世界应用程序中的各种资源预算时,将一一一个尺寸的多个网络预算到多个网络的巨大计算负担。在本文中,我们提出了基于歧视性SSL的可靠预处理网络(DSPNET),可以立即训练,然后缩小到各种大小的多个子网络,每个尺寸都可以忠实地学习良好的表示,并可以作为良好的初始化,以良好的初始化。具有各种资源预算的下游任务。具体而言,我们通过优雅地集成SSL和知识蒸馏,将微小网络的思想扩展到判别性SSL范式。我们在图像网上与网络与线性评估和半监督评估方案的一个单独预处理的网络表现出可比性或改进的性能,同时降低了较大的培训成本。预处理的模型还可以很好地推广到下游检测和分割任务。代码将公开。
translated by 谷歌翻译