最近,卷积神经网络(CNN)在分类任务中取得了良好的性能。众所周知,CNN被认为是“黑匣子”,这很难理解预测机制并调试错误的预测。开发了一些模型调试和解释工作,用于解决上述缺点。然而,这些方法专注于解释和诊断模型预测的可能原因,基于研究人员手动处理以下模型优化的模型预测。在本文中,我们提出了第一个完全自动模型诊断和治疗工具,称为模型医生。基于两个发现,每个类别只与稀疏和特定的卷积核相关,而2)在特征空间中逐次地隔离2)对逆势样本,设计了一个简单的聚合梯度约束,以便有效地诊断和优化CNN分类器。聚合渐变策略是用于主流CNN分类器的多功能模块。广泛的实验表明,拟议的模型医生适用于所有现有的CNN分类器,并提高16美元主流CNN分类器的准确性1%-5%。
translated by 谷歌翻译
Recently, increasing attention has been drawn to the internal mechanisms of convolutional neural networks, and the reason why the network makes specific decisions. In this paper, we develop a novel post-hoc visual explanation method called Score-CAM based on class activation mapping. Unlike previous class activation mapping based approaches, Score-CAM gets rid of the dependence on gradients by obtaining the weight of each activation map through its forward passing score on target class, the final result is obtained by a linear combination of weights and activation maps. We demonstrate that Score-CAM achieves better visual performance and fairness for interpreting the decision making process. Our approach outperforms previous methods on both recognition and localization tasks, it also passes the sanity check. We also indicate its application as debugging tools. The implementation is available 1 .
translated by 谷歌翻译
深神经网络(DNN)的黑盒性质严重阻碍了其在特定场景中的性能改善和应用。近年来,基于类激活映射的方法已被广泛用于解释计算机视觉任务中模型的内部决策。但是,当此方法使用反向传播获得梯度时,它将在显着图中引起噪声,甚至找到与决策无关的特征。在本文中,我们提出了一个基于绝对价值类激活映射(ABS-CAM)方法,该方法优化了从反向传播中得出的梯度,并将所有这些梯度变成正梯度,以增强输出神经元激活的视觉特征,并改善。显着图的本地化能力。 ABS-CAM的框架分为两个阶段:生成初始显着性图并生成最终显着图。第一阶段通过优化梯度来提高显着性图的定位能力,第二阶段将初始显着性图与原始图像线性结合在一起,以增强显着性图的语义信息。我们对拟议方法进行定性和定量评估,包括删除,插入和指向游戏。实验结果表明,ABS-CAM显然可以消除显着性图中的噪声,并且可以更好地定位与决策相关的功能,并且优于以前的识别和定位任务中的方法。
translated by 谷歌翻译
使用深度学习模型从组织学数据中诊断癌症提出了一些挑战。这些图像中关注区域(ROI)的癌症分级和定位通常依赖于图像和像素级标签,后者需要昂贵的注释过程。深度弱监督的对象定位(WSOL)方法为深度学习模型的低成本培训提供了不同的策略。仅使用图像级注释,可以训练这些方法以对图像进行分类,并为ROI定位进行分类类激活图(CAM)。本文综述了WSOL的​​最先进的DL方法。我们提出了一种分类法,根据模型中的信息流,将这些方法分为自下而上和自上而下的方法。尽管后者的进展有限,但最近的自下而上方法目前通过深层WSOL方法推动了很多进展。早期作品的重点是设计不同的空间合并功能。但是,这些方法达到了有限的定位准确性,并揭示了一个主要限制 - 凸轮的不足激活导致了高假阴性定位。随后的工作旨在减轻此问题并恢复完整的对象。评估和比较了两个具有挑战性的组织学数据集的分类和本地化准确性,对我们的分类学方法进行了评估和比较。总体而言,结果表明定位性能差,特别是对于最初设计用于处理自然图像的通用方法。旨在解决组织学数据挑战的方法产生了良好的结果。但是,所有方法都遭受高假阳性/阴性定位的影响。在组织学中应用深WSOL方法的应用是四个关键的挑战 - 凸轮的激活下/过度激活,对阈值的敏感性和模型选择。
translated by 谷歌翻译
用于头部和颈鳞状细胞癌(HNSCC)的诊断和治疗管理由常规诊断头和颈部计算断层扫描(CT)扫描引导,以识别肿瘤和淋巴结特征。折叠延伸(ECE)是患者的患者生存结果与HNSCC的强烈预测因子。在改变患者的暂存和管理时,必须检测ECE的发生至关重要。目前临床ECE检测依赖于放射科学医生进行的视觉鉴定和病理确认。基于机器学习(ML)的ECE诊断在近年来的潜力上表现出很高的潜力。然而,在大多数基于ML的ECE诊断研究中,手动注释是淋巴结区域的必要数据预处理步骤。此外,本手册注释过程是耗时,劳动密集型和容易出错。因此,在本文中,我们提出了一种梯度映射引导的可解释网络(GMGenet)框架,以自动执行ECE识别而不需要注释的淋巴结区域信息。提出了梯度加权类激活映射(GRAC-CAM)技术,以指导深度学习算法专注于与ECE高度相关的区域。提取信息丰富的兴趣(VoIS),无需标记淋巴结区域信息。在评估中,所提出的方法是使用交叉验证的训练和测试,可分别实现测试精度和90.2%和91.1%的AUC。已经分析了ECE的存在或不存在并与黄金标准组织病理学发现相关。
translated by 谷歌翻译
解释深度卷积神经网络最近引起了人们的关注,因为它有助于了解网络的内部操作以及为什么它们做出某些决定。显着地图强调了与网络决策的主要连接的显着区域,是可视化和分析计算机视觉社区深层网络的最常见方法之一。但是,由于未经证实的激活图权重的建议,这些图像没有稳固的理论基础,并且未能考虑每个像素之间的关系,因此现有方法生成的显着图不能表示图像中的真实信息。在本文中,我们开发了一种基于类激活映射的新型事后视觉解释方法,称为Shap-Cam。与以前的基于梯度的方法不同,Shap-Cam通过通过Shapley值获得每个像素的重要性来摆脱对梯度的依赖。我们证明,Shap-Cam可以在解释决策过程中获得更好的视觉性能和公平性。我们的方法在识别和本地化任务方面的表现优于以前的方法。
translated by 谷歌翻译
深层神经网络以其对各种机器学习和人工智能任务的精湛处理而闻名。但是,由于其过度参数化的黑盒性质,通常很难理解深层模型的预测结果。近年来,已经提出了许多解释工具来解释或揭示模型如何做出决策。在本文中,我们回顾了这一研究,并尝试进行全面的调查。具体来说,我们首先介绍并阐明了人们通常会感到困惑的两个基本概念 - 解释和解释性。为了解决解释中的研究工作,我们通过提出新的分类法来阐述许多解释算法的设计。然后,为了了解解释结果,我们还调查了评估解释算法的性能指标。此外,我们总结了使用“可信赖”解释算法评估模型的解释性的当前工作。最后,我们审查并讨论了深层模型的解释与其他因素之间的联系,例如对抗性鲁棒性和从解释中学习,并介绍了一些开源库,以解释算法和评估方法。
translated by 谷歌翻译
We propose a technique for producing 'visual explanations' for decisions from a large class of Convolutional Neural Network (CNN)-based models, making them more transparent and explainable.Our approach -Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept (say 'dog' in a classification network or a sequence of words in captioning network) flowing into the final convolutional layer to produce a coarse localization map highlighting the important regions in the image for predicting the concept.Unlike previous approaches, Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fullyconnected layers (e.g. VGG), (2) CNNs used for structured outputs (e.g. captioning), (3) CNNs used in tasks with multimodal inputs (e.g. visual question answering) or reinforcement learning, all without architectural changes or re-training. We combine Grad-CAM with existing fine-grained visualizations to create a high-resolution class-discriminative vi-
translated by 谷歌翻译
越来越多的电子健康记录(EHR)数据和深度学习技术进步的越来越多的可用性(DL)已经引发了在开发基于DL的诊断,预后和治疗的DL临床决策支持系统中的研究兴趣激增。尽管承认医疗保健的深度学习的价值,但由于DL的黑匣子性质,实际医疗环境中进一步采用的障碍障碍仍然存在。因此,有一个可解释的DL的新兴需求,它允许最终用户评估模型决策,以便在采用行动之前知道是否接受或拒绝预测和建议。在这篇综述中,我们专注于DL模型在医疗保健中的可解释性。我们首先引入深入解释性的方法,并作为该领域的未来研究人员或临床从业者的方法参考。除了这些方法的细节之外,我们还包括对这些方法的优缺点以及它们中的每个场景都适合的讨论,因此感兴趣的读者可以知道如何比较和选择它们供使用。此外,我们讨论了这些方法,最初用于解决一般域问题,已经适应并应用于医疗保健问题以及如何帮助医生更好地理解这些数据驱动技术。总的来说,我们希望这项调查可以帮助研究人员和从业者在人工智能(AI)和临床领域了解我们为提高其DL模型的可解释性并相应地选择最佳方法。
translated by 谷歌翻译
我们提出了CX-TOM,简短于与理论的理论,一种新的可解释的AI(XAI)框架,用于解释深度卷积神经网络(CNN)制定的决定。与生成解释的XAI中的当前方法形成对比,我们将说明作为迭代通信过程,即对话框,机器和人类用户之间。更具体地说,我们的CX-TOM框架通过调解机器和人类用户的思想之间的差异,在对话中生成解释顺序。为此,我们使用思想理论(汤姆),帮助我们明确地建模人类的意图,通过人类的推断,通过机器推断出人类的思想。此外,大多数最先进的XAI框架提供了基于注意的(或热图)的解释。在我们的工作中,我们表明,这些注意力的解释不足以增加人类信任在潜在的CNN模型中。在CX-TOM中,我们使用命名为您定义的故障行的反事实解释:给定CNN分类模型M预测C_PRED的CNN分类模型M的输入图像I,错误线识别最小的语义级别特征(例如,斑马上的条纹,狗的耳朵),称为可解释的概念,需要从I添加或删除,以便将m的分类类别改变为另一个指定的c_alt。我们认为,由于CX-TOM解释的迭代,概念和反事本质,我们的框架对于专家和非专家用户来说是实用的,更加自然,以了解复杂的深度学习模式的内部运作。广泛的定量和定性实验验证了我们的假设,展示了我们的CX-TOM显着优于最先进的可解释的AI模型。
translated by 谷歌翻译
无法解释的黑框模型创建场景,使异常引起有害响应,从而造成不可接受的风险。这些风险促使可解释的人工智能(XAI)领域通过评估黑盒神经网络中的局部解释性来改善信任。不幸的是,基本真理对于模型的决定不可用,因此评估仅限于定性评估。此外,可解释性可能导致有关模型或错误信任感的不准确结论。我们建议通过探索Black-Box模型的潜在特征空间来从用户信任的有利位置提高XAI。我们提出了一种使用典型的几弹网络的Protoshotxai方法,该方法探索了不同类别的非线性特征之间的对比歧管。用户通过扰动查询示例的输入功能并记录任何类的示例子集的响应来探索多种多样。我们的方法是第一个可以将其扩展到很少的网络的本地解释的XAI模型。我们将ProtoShotxai与MNIST,Omniglot和Imagenet的最新XAI方法进行了比较,以进行定量和定性,Protoshotxai为模型探索提供了更大的灵活性。最后,Protoshotxai还展示了对抗样品的新颖解释和检测。
translated by 谷歌翻译
人工智能被出现为众多临床应用诊断和治疗决策的有用援助。由于可用数据和计算能力的快速增加,深度神经网络的性能与许多任务中的临床医生相同或更好。为了符合信任AI的原则,AI系统至关重要的是透明,强大,公平和确保责任。由于对决策过程的具体细节缺乏了解,目前的深神经系统被称为黑匣子。因此,需要确保在常规临床工作流中纳入常规神经网络之前的深度神经网络的可解释性。在这一叙述审查中,我们利用系统的关键字搜索和域专业知识来确定已经基于所产生的解释和技术相似性的类型的医学图像分析应用的深度学习模型来确定九种不同类型的可解释方法。此外,我们报告了评估各种可解释方法产生的解释的进展。最后,我们讨论了局限性,提供了利用可解释性方法和未来方向的指导,了解医学成像分析深度神经网络的解释性。
translated by 谷歌翻译
在本文中提出了两种基于学习的新基于学习的可解释的AI(XAI)方法,用于深卷积神经网络(DCNN)图像分类器,称为L-CAM-FM和L-CAM-IMG。两种方法都使用了一种注意机制,该机制插入了原始(冷冻)DCNN中,并经过训练以从最后一个卷积层的特征图中得出类激活图(CAM)。在训练过程中,将CAM应用于特征图(L-CAM-FM)或输入图像(L-CAM-IMG),迫使注意机制学习了解释DCNN结果的图像区域。对成像网的实验评估表明,所提出的方法获得竞争结果,同时需要在推理阶段进行一次前进。此外,根据派生的解释,进行了全面的定性分析,为了解分类错误背后的原因,包括影响训练有素的分类器的可能数据集偏见。
translated by 谷歌翻译
3D卷积神经网络(3D CNN)在诸如视频序列之类的3D数据中捕获空间和时间信息。然而,由于卷积和汇集机制,信息损失似乎是不可避免的。为了改善3D CNN的视觉解释和分类,我们提出了两种方法; i)使用培训的3dresnext网络聚合到本地(全局 - 本地)离散梯度的层面全局,II)实施注意门控网络以提高动作识别的准确性。拟议的方法打算通过视觉归因,弱监督行动本地化和行动识别,显示各层在3D CNN中被称为全球局部关注的有用性。首先,使用关于最大预测类的BackPropagation培训3dresnext培训并应用于动作分类。然后将每层的梯度和激活取样。稍后,聚合用于产生更细致的注意力,指出了预测类输入视频的最关键部分。我们使用最终关注的轮廓阈值为最终的本地化。我们使用3DCAM使用细粒度的视觉解释来评估修剪视频中的空间和时间动作定位。实验结果表明,该拟议方法产生了丰富的视觉解释和歧视性的关注。此外,通过每个层上的注意栅格的动作识别产生比基线模型更好的分类结果。
translated by 谷歌翻译
可解释的人工智能(XAI)的新兴领域旨在为当今强大但不透明的深度学习模型带来透明度。尽管本地XAI方法以归因图的形式解释了个体预测,从而确定了重要特征的发生位置(但没有提供有关其代表的信息),但全局解释技术可视化模型通常学会的编码的概念。因此,两种方法仅提供部分见解,并留下将模型推理解释的负担。只有少数当代技术旨在将本地和全球XAI背后的原则结合起来,以获取更多信息的解释。但是,这些方法通常仅限于特定的模型体系结构,或对培训制度或数据和标签可用性施加其他要求,这实际上使事后应用程序成为任意预训练的模型。在这项工作中,我们介绍了概念相关性传播方法(CRP)方法,该方法结合了XAI的本地和全球观点,因此允许回答“何处”和“ where”和“什么”问题,而没有其他约束。我们进一步介绍了相关性最大化的原则,以根据模型对模型的有用性找到代表性的示例。因此,我们提高了对激活最大化及其局限性的共同实践的依赖。我们证明了我们方法在各种环境中的能力,展示了概念相关性传播和相关性最大化导致了更加可解释的解释,并通过概念图表,概念组成分析和概念集合和概念子区和概念子区和概念子集和定量研究对模型的表示和推理提供了深刻的见解。它们在细粒度决策中的作用。
translated by 谷歌翻译
近年来,大肠癌已成为危害人类健康最重要的疾病之一。深度学习方法对于结直肠组织病理学图像的分类越来越重要。但是,现有方法更多地集中在使用计算机而不是人类计算机交互的端到端自动分类。在本文中,我们提出了一个IL-MCAM框架。它基于注意机制和互动学习。提出的IL-MCAM框架包括两个阶段:自动学习(AL)和交互性学习(IL)。在AL阶段,使用包含三种不同注意机制通道和卷积神经网络的多通道注意机制模型用于提取多通道特征进行分类。在IL阶段,提出的IL-MCAM框架不断地将错误分类的图像添加到交互式方法中,从而提高了MCAM模型的分类能力。我们对数据集进行了比较实验,并在HE-NCT-CRC-100K数据集上进行了扩展实验,以验证拟议的IL-MCAM框架的性能,分别达到98.98%和99.77%的分类精度。此外,我们进行了消融实验和互换性实验,以验证三个通道的能力和互换性。实验结果表明,所提出的IL-MCAM框架在结直肠组织病理学图像分类任务中具有出色的性能。
translated by 谷歌翻译
尽管有无数的同伴审查的论文,证明了新颖的人工智能(AI)基于大流行期间的Covid-19挑战的解决方案,但很少有临床影响。人工智能在Covid-19大流行期间的影响因缺乏模型透明度而受到极大的限制。这种系统审查考察了在大流行期间使用可解释的人工智能(Xai)以及如何使用它可以克服现实世界成功的障碍。我们发现,Xai的成功使用可以提高模型性能,灌输信任在最终用户,并提供影响用户决策所需的值。我们将读者介绍给常见的XAI技术,其实用程序以及其应用程序的具体例子。 XAI结果的评估还讨论了最大化AI的临床决策支持系统的价值的重要步骤。我们说明了Xai的古典,现代和潜在的未来趋势,以阐明新颖的XAI技术的演变。最后,我们在最近出版物支持的实验设计过程中提供了建议的清单。潜在解决方案的具体示例也解决了AI解决方案期间的共同挑战。我们希望本次审查可以作为提高未来基于AI的解决方案的临床影响的指导。
translated by 谷歌翻译
采用注意机制的普遍性引起了人们对注意力分布的解释性的关注。尽管它提供了有关模型如何运行的见解,但由于对模型预测的解释仍然非常怀疑,但它利用了注意力。社区仍在寻求更容易解释的策略,以更好地识别最终决定最大的本地活跃地区。为了提高现有注意模型的解释性,我们提出了一种新型的双线性代表性非参数注意(BR-NPA)策略,该策略捕获了与任务相关的人类解剖信息。目标模型首先要蒸馏以具有高分辨率中间特征图。然后,根据本地成对特征相似性将代表性特征分组,以产生更精确的,更精确的注意力图,突出显示输入的任务相关部分。获得的注意图根据化合物特征的活性水平进行对,该功能提供了有关突出显示区域的重要水平的信息。提出的模型可以很容易地在涉及分类的各种现代深层模型中进行调整。与最先进的注意力模型和可视化方法相比,广泛的定量和定性实验显示了更全面和准确的视觉解释,以及跨多个任务的可视化方法,包括细粒度的图像分类,很少的射击分类和人重新识别,而无需损害该方法分类精度。提出的可视化模型急切地阐明了神经网络如何在不同任务中以不同的方式“注意他们的注意力”。
translated by 谷歌翻译
类激活图(CAM)已被广泛研究,用于视觉解释卷积神经网络的内部工作机理。现有基于CAM的方法的关键是计算有效的权重以在目标卷积层中结合激活图。现有的基于梯度和得分的加权方案在确保CAM的可区分性或忠诚度方面表现出了优越性,但它们通常在这两种属性中都无法表现出色。在本文中,我们提出了一种名为FD-CAM的新型CAM加权方案,以提高基于CAM的CNN视觉解释的忠诚和可区分性。首先,我们通过执行分组的通道切换操作来提高基于分数的权重的忠诚和可区分性。具体而言,对于每个通道,我们计算其相似性组,并同时打开或关闭一组通道以计算类预测评分的变化为权重。然后,我们将改进的基于得分的权重与常规梯度的权重相结合,以便可以进一步提高最终CAM的可区分性。我们与最新的CAM算法进行了广泛的比较。定量和定性的结果表明,我们的FD-CAM可以对CNN产生更忠实,更具歧视性的视觉解释。我们还进行实验,以验证提出的分组通道切换和重量组合方案在改善结果方面的有效性。我们的代码可在https://github.com/crishhhhh1998/fd-cam上找到。
translated by 谷歌翻译
深度学习已被广​​泛用于医学图像分割,并且录制了录制了该领域深度学习的成功的大量论文。在本文中,我们使用深层学习技术对医学图像分割的全面主题调查。本文进行了两个原创贡献。首先,与传统调查相比,直接将深度学习的文献分成医学图像分割的文学,并为每组详细介绍了文献,我们根据从粗略到精细的多级结构分类目前流行的文献。其次,本文侧重于监督和弱监督的学习方法,而不包括无监督的方法,因为它们在许多旧调查中引入而且他们目前不受欢迎。对于监督学习方法,我们分析了三个方面的文献:骨干网络的选择,网络块的设计,以及损耗功能的改进。对于虚弱的学习方法,我们根据数据增强,转移学习和交互式分割进行调查文献。与现有调查相比,本调查将文献分类为比例不同,更方便读者了解相关理由,并将引导他们基于深度学习方法思考医学图像分割的适当改进。
translated by 谷歌翻译