异常在所有科学领域都无处不在,并且由于对数据分布的不完整知识或突然进入发挥和扭曲观测的未知过程,因此可以表达意外事件。由于此类事件“稀有性,培训对异常检测(广告)任务的深入学习模型,科学家仅依赖于”正常“数据,即非异常样本。因此,让神经网络推断输入数据下方的分布。在这种情况下,我们提出了一种小说框架,名为多层单级分类(MOCCA),在广告任务中培训和测试深入学习模型。具体来说,我们将它应用于AutoEncoders。我们工作中的一个关键新颖性源于明确优化广告任务的中间陈述。实际上,与常用方法不同,将神经网络视为单个计算块,即,仅使用最后一层的输出,MOCCA明确地利用了深度架构的多层结构。每个层的特征空间在训练期间针对广告进行了优化,而在测试阶段,从训练的层提取的深表示混合以检测异常。使用Mocca,我们将培训过程分为两个步骤。首先,AutoEncoder仅在重建任务上培训。然后,我们只保留编码器任务,以最小化输出表示和参考点之间的L_2距离,在每个考虑的层上都是无异常的训练数据质心。随后,我们将在编码器模型的各种训练层中提取的深度特征组合以检测推理时间的异常。为了评估使用MOCCA培训的模型的性能,我们对公共数据集进行了广泛的实验。我们表明,我们的拟议方法对文献中可用的最先进的方法达到了可比或卓越的性能。
translated by 谷歌翻译
视频异常检测是现在计算机视觉中的热门研究主题之一,因为异常事件包含大量信息。异常是监控系统中的主要检测目标之一,通常需要实时行动。关于培训的标签数据的可用性(即,没有足够的标记数据进行异常),半监督异常检测方法最近获得了利益。本文介绍了该领域的研究人员,以新的视角,并评论了最近的基于深度学习的半监督视频异常检测方法,基于他们用于异常检测的共同策略。我们的目标是帮助研究人员开发更有效的视频异常检测方法。由于选择右深神经网络的选择对于这项任务的几个部分起着重要作用,首先准备了对DNN的快速比较审查。与以前的调查不同,DNN是从时空特征提取观点审查的,用于视频异常检测。这部分审查可以帮助本领域的研究人员选择合适的网络,以获取其方法的不同部分。此外,基于其检测策略,一些最先进的异常检测方法受到严格调查。审查提供了一种新颖,深入了解现有方法,并导致陈述这些方法的缺点,这可能是未来作品的提示。
translated by 谷歌翻译
Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased towards one class (normal) due to the insufficient sample size of the other class (abnormal). While this can be addressed as a supervised learning problem, a significantly more challenging problem is that of detecting the unknown/unseen anomaly case that takes us instead into the space of a one-class, semi-supervised learning paradigm. We introduce such a novel anomaly detection model, by using a conditional generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space. Employing encoder-decoder-encoder sub-networks in the generator network enables the model to map the input image to a lower dimension vector, which is then used to reconstruct the generated output image. The use of the additional encoder network maps this generated image to its latent representation. Minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution -an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches.
translated by 谷歌翻译
半监督异常检测旨在使用在正常数据上培训的模型来检测来自正常样本的异常。随着近期深度学习的进步,研究人员设计了高效的深度异常检测方法。现有作品通常使用神经网络将数据映射到更具内容性的表示中,然后应用异常检测算法。在本文中,我们提出了一种方法,DASVDD,它共同学习AutoEncoder的参数,同时最小化其潜在表示上的封闭超球的音量。我们提出了一个异常的分数,它是自动化器的重建误差和距离潜在表示中封闭边距中心的距离的组合。尽量减少这种异常的分数辅助我们在培训期间学习正常课程的潜在分布。包括异常分数中的重建错误确保DESVDD不受常见的极度崩溃问题,因为DESVDD模型不会收敛到映射到潜在表示中的恒定点的常量点。几个基准数据集上的实验评估表明,该方法优于常用的最先进的异常检测算法,同时在不同的异常类中保持鲁棒性能。
translated by 谷歌翻译
与行业4.0的发展相一致,越来越多的关注被表面缺陷检测领域所吸引。提高效率并节省劳动力成本已稳步成为行业领域引起人们关注的问题,近年来,基于深度学习的算法比传统的视力检查方法更好。尽管现有的基于深度学习的算法偏向于监督学习,但这不仅需要大量标记的数据和大量的劳动力,而且还效率低下,并且有一定的局限性。相比之下,最近的研究表明,无监督的学习在解决视觉工业异常检测的高于缺点方面具有巨大的潜力。在这项调查中,我们总结了当前的挑战,并详细概述了最近提出的针对视觉工业异常检测的无监督算法,涵盖了五个类别,其创新点和框架详细描述了。同时,提供了包含表面图像样本的公开可用数据集的信息。通过比较不同类别的方法,总结了异常检测算法的优点和缺点。预计将协助研究社区和行业发展更广泛,更跨域的观点。
translated by 谷歌翻译
As the number of heterogenous IP-connected devices and traffic volume increase, so does the potential for security breaches. The undetected exploitation of these breaches can bring severe cybersecurity and privacy risks. Anomaly-based \acp{IDS} play an essential role in network security. In this paper, we present a practical unsupervised anomaly-based deep learning detection system called ARCADE (Adversarially Regularized Convolutional Autoencoder for unsupervised network anomaly DEtection). With a convolutional \ac{AE}, ARCADE automatically builds a profile of the normal traffic using a subset of raw bytes of a few initial packets of network flows so that potential network anomalies and intrusions can be efficiently detected before they cause more damage to the network. ARCADE is trained exclusively on normal traffic. An adversarial training strategy is proposed to regularize and decrease the \ac{AE}'s capabilities to reconstruct network flows that are out-of-the-normal distribution, thereby improving its anomaly detection capabilities. The proposed approach is more effective than state-of-the-art deep learning approaches for network anomaly detection. Even when examining only two initial packets of a network flow, ARCADE can effectively detect malware infection and network attacks. ARCADE presents 20 times fewer parameters than baselines, achieving significantly faster detection speed and reaction time.
translated by 谷歌翻译
当前,借助监督学习方法,基于深度学习的视觉检查已取得了非常成功的成功。但是,在实际的工业场景中,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视无视的异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所审查方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了一些未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。
translated by 谷歌翻译
识别异常是指检测不像训练数据分布的样本。许多生成模型已被用于寻找异常,以及其中,基于生成的对抗网络(GaN)的方法目前非常受欢迎。 GANS主要依靠这些模型的丰富上下文信息来识别实际培训分布。在这一类比之后,我们建议了基于GANS -A组合的新型无人监督模型和甘甘。此外,引入了一种新的评分功能,以靶向异常,其中鉴别器的内部表示和发电机的视觉表示的线性组合加上自动化器的编码表示,共同定义所提出的异常得分。该模型进一步评估了诸如SVHN,CIFAR10和MNIST之类的基准数据集以及白血病图像的公共医疗数据集。在所有实验中,我们的模型表现出现有的对应物,同时略微改善推理时间。
translated by 谷歌翻译
在计算机视觉领域,异常检测最近引起了越来越多的关注,这可能是由于其广泛的应用程序从工业生产线上的产品故障检测到视频监视中即将发生的事件检测到在医疗扫描中发现病变。不管域如何,通常将异常检测构架为一级分类任务,其中仅在正常示例上进行学习。整个成功的异常检测方法的家庭基于学习重建掩盖的正常输入(例如贴片,未来帧等),并将重建误差的幅度作为异常水平的指标。与其他基于重建的方法不同,我们提出了一种新颖的自我监督蒙面的卷积变压器块(SSMCTB),该卷积变压器块(SSMCTB)包括基于重建的功能在核心架构层面上。拟议的自我监督块非常灵活,可以在神经网络的任何层上掩盖信息,并与广泛的神经体系结构兼容。在这项工作中,我们扩展了以前的自我监督预测性卷积专注块(SSPCAB),并具有3D掩盖的卷积层,以及用于频道注意的变压器。此外,我们表明我们的块适用于更广泛的任务,在医学图像和热视频中添加异常检测到基于RGB图像和监视视频的先前考虑的任务。我们通过将SSMCTB的普遍性和灵活性整合到多个最先进的神经模型中,以进行异常检测,从而带来了经验结果,可以证实对五个基准的绩效改进:MVTEC AD,BRATS,BRATS,Avenue,Shanghaitech和Thermal和Thermal和Thermal罕见事件。我们在https://github.com/ristea/ssmctb上发布代码和数据作为开源。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
在图像中检测异常区域是工业监测中经常遇到的问题。一个相关的例子是对正常条件下符合特定纹理的组织和其他产品的分析,而缺陷会引入正常模式的变化。我们通过训练深层自动编码器来解决异常检测问题,我们表明,基于复杂的小波结构相似性(CW-SSIM)采用损失函数(CW-SSIM)与传统的自动编码器损失函数相比,这类图像上的检测性能出色。我们对众所周知的异常检测基准测试的实验表明,通过这种损失函数训练的简单模型可以实现可比性或优越的性能,从而利用更深入,更大,更大的计算要求的神经网络的最先进方法。
translated by 谷歌翻译
深度异常检测已被证明是几个领域的有效和强大的方法。自我监督学习的引入极大地帮助了许多方法,包括异常检测,其中使用简单的几何变换识别任务。然而,由于它们缺乏更精细的特征,因此这些方法在细粒度问题上表现不佳,并且通常高度依赖于异常类型。在本文中,我们探讨了使用借口任务的自我监督异常检测的每个步骤。首先,我们介绍了专注于不同视觉线索的新型鉴别和生成任务。一部分拼图拼图任务侧重于结构提示,而在每个件上使用色调旋转识别进行比色法,并且执行部分重新染色任务。为了使重新着色任务更关注对象而不是在后台上关注,我们建议包括图像边界的上下文颜色信息。然后,我们介绍了一个新的分配检测功能,并与其他分配检测方法相比,突出了其更好的稳定性。随之而来,我们还试验不同的分数融合功能。最后,我们在具有经典对象识别的对象异常组成的综合异常检测协议上评估我们的方法,用细粒度分类和面部反欺骗数据集的局部分类和局部异常的样式异常。我们的模型可以更准确地学习使用这些自我监督任务的高度辨别功能。它优于最先进的最先进的相对误差改善对象异常,40%的面对反欺骗问题。
translated by 谷歌翻译
在视觉检查形式中对纹理表面进行工业检查的最新进展使这种检查成为可能,以实现高效,灵活的制造系统。我们提出了一个无监督的特征内存重排网络(FMR-NET),以同时准确检测各种纹理缺陷。与主流方法一致,我们采用了背景重建的概念。但是,我们创新地利用人工合成缺陷来使模型识别异常,而传统智慧仅依赖于无缺陷的样本。首先,我们采用一个编码模块来获得纹理表面的多尺度特征。随后,提出了一个基于对比的基于学习的内存特征模块(CMFM)来获得判别性表示,并在潜在空间中构建一个正常的特征记忆库,可以用作补丁级别的缺陷和快速异常得分。接下来,提出了一个新型的全球特征重排模块(GFRM),以进一步抑制残余缺陷的重建。最后,一个解码模块利用还原的功能来重建正常的纹理背景。此外,为了提高检查性能,还利用了两阶段的训练策略进行准确的缺陷恢复改进,并且我们利用一种多模式检查方法来实现噪声刺激性缺陷定位。我们通过广泛的实验来验证我们的方法,并通过多级检测方法在协作边缘进行实用的部署 - 云云智能制造方案,表明FMR-NET具有先进的检查准确性,并显示出巨大的使用潜力在启用边缘计算的智能行业中。
translated by 谷歌翻译
深度卷积自动编码器为学习非线性维度降低的方式提供了有效的工具。最近,它们已用于视觉域中的异常检测任务。通过使用无异常示例为重建误差进行优化,普遍的信念是,训练有素的网络在测试阶段很难重建异常部分。这通常是通过控制网络的容量来通过减小瓶颈层的大小或在其激活上执行稀疏性约束来完成的。但是,这些技术都没有明确惩罚重建异常信号,通常会导致检测不佳。我们通过调整自我监督的学习制度来解决这个问题,该系统允许在训练过程中使用判别性信息,同时正规化模型通过修改后的重建错误将重点放在数据歧管上,从而导致准确的检测。与相关方法不同,训练和预测过程中提出的方法的推断非常有效地处理整个输入图像。我们对MVTEC异常检测数据集的实验表明该方法的高识别和定位性能。特别是,在纹理 - 材料上,我们的方法始终以大幅度的边距优于最近的一系列最近的异常检测方法。
translated by 谷歌翻译
异常检测旨在识别数据点,这些数据点显示了未标记数据集中大多数数据的系统偏差。一个普遍的假设是,可以使用干净的培训数据(没有异常),这在实践中通常会违反。我们提出了一种在存在与广泛模型兼容的未标记异常的情况下训练异常检测器的策略。这个想法是在更新模型参数时将二进制标签共同推断为每个基准(正常与异常)。受到异常暴露的启发(Hendrycks等人,2018年),该暴露考虑合成创建,标记为异常,我们因此使用了两个共享参数的损失的组合:一个用于正常参数,一个用于异常数据。然后,我们对参数和最可能(潜在)标签进行块坐标更新。我们在三个图像数据集,30个表格数据集和视频异常检测基准上使用几个主链模型进行了实验,对基线显示了一致且显着的改进。
translated by 谷歌翻译
Anomaly detection and localization are widely used in industrial manufacturing for its efficiency and effectiveness. Anomalies are rare and hard to collect and supervised models easily over-fit to these seen anomalies with a handful of abnormal samples, producing unsatisfactory performance. On the other hand, anomalies are typically subtle, hard to discern, and of various appearance, making it difficult to detect anomalies and let alone locate anomalous regions. To address these issues, we propose a framework called Prototypical Residual Network (PRN), which learns feature residuals of varying scales and sizes between anomalous and normal patterns to accurately reconstruct the segmentation maps of anomalous regions. PRN mainly consists of two parts: multi-scale prototypes that explicitly represent the residual features of anomalies to normal patterns; a multisize self-attention mechanism that enables variable-sized anomalous feature learning. Besides, we present a variety of anomaly generation strategies that consider both seen and unseen appearance variance to enlarge and diversify anomalies. Extensive experiments on the challenging and widely used MVTec AD benchmark show that PRN outperforms current state-of-the-art unsupervised and supervised methods. We further report SOTA results on three additional datasets to demonstrate the effectiveness and generalizability of PRN.
translated by 谷歌翻译
异常检测是确定不符合正常数据分布的样品。由于异常数据的无法获得,培训监督的深神经网络是一项繁琐的任务。因此,无监督的方法是解决此任务的常见方法。深度自动编码器已被广泛用作许多无监督的异常检测方法的基础。但是,深层自动编码器的一个显着缺点是,它们通过概括重建异常值来提供不足的表示异常检测的表示。在这项工作中,我们设计了一个对抗性框架,该框架由两个竞争组件组成,一个对抗性变形者和一个自动编码器。对抗性变形器是一种卷积编码器,学会产生有效的扰动,而自动编码器是一个深层卷积神经网络,旨在重建来自扰动潜在特征空间的图像。这些网络经过相反的目标训练,在这种目标中,对抗性变形者会产生用于编码器潜在特征空间的扰动,以最大化重建误差,并且自动编码器试图中和这些扰动的效果以最大程度地减少它。当应用于异常检测时,该提出的方法会由于对特征空间的扰动应用而学习语义上的富裕表示。所提出的方法在图像和视频数据集上的异常检测中优于现有的最新方法。
translated by 谷歌翻译
本文认为很少发生异常检测(FSAD),这是一种实用但研究不足的异常检测设置(AD),在训练中,每个类别仅提供有限数量的正常图像。到目前为止,现有的FSAD研究遵循用于标准AD的单层学习范式,并且尚未探索类别间的共同点。受到人类如何检测异常的启发,即将所讨论的图像与正常图像进行比较,我们在这里利用注册,这是一个固有跨越类别(​​作为代理任务)固有概括的图像对齐任务,以训练类别不稳定的异常异常检测模型。在测试过程中,通过比较测试图像的注册特征及其相应支持(正常)图像来识别异常。据我们所知,这是训练单个可推广模型的第一种FSAD方法,不需要对新类别进行重新训练或参数调整。实验结果表明,在MVTEC和MPDD基准上,所提出的方法在AUC中优于最先进的FSAD方法。
translated by 谷歌翻译
在智能交通系统中,交通拥堵异常检测至关重要。运输机构的目标有两个方面:监视感兴趣领域的一般交通状况,并在异常拥堵状态下定位道路细分市场。建模拥塞模式可以实现这些目标,以实现全市道路的目标,相当于学习多元时间序列(MTS)的分布。但是,现有作品要么不可伸缩,要么无法同时捕获MTS中的空间信息。为此,我们提出了一个由数据驱动的生成方法组成的原则性和全面的框架,该方法可以执行可拖动的密度估计来检测流量异常。我们的方法在特征空间中的第一群段段,然后使用条件归一化流以在无监督的设置下在群集级别识别异常的时间快照。然后,我们通过在异常群集上使用内核密度估计器来识别段级别的异常。关于合成数据集的广泛实验表明,我们的方法在召回和F1得分方面显着优于几种最新的拥塞异常检测和诊断方法。我们还使用生成模型来采样标记的数据,该数据可以在有监督的环境中训练分类器,从而减轻缺乏在稀疏设置中进行异常检测的标记数据。
translated by 谷歌翻译
Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts.
translated by 谷歌翻译