功能连接是研究大脑振荡活动的关键方法,以便为神经元相互作用的潜在动态提供重要见解,并且主要用于脑活动分析。建立脑电脑界面信息几何的进步,我们提出了一种新颖的框架,它结合了功能连接估计和基于协方差的管道来对精神状态进行分类,例如电机图像。针对每个估算器培训的riemannian分类器,并且集合分类器将决策组合在每个特征空间中。提供了对功能连接估计器的全面评估,并在不同的条件和数据集上评估最佳表演管道,称为岩酮。使用Meta分析在数据集中聚合结果,FUCONE比所有最先进的方法更好地执行。性能增益主要是对特征空间的改进的改进的改进,增加了集合分类器相对于和内部主题间变异性的鲁棒性。
translated by 谷歌翻译
在本文中,正在研究精神任务 - 根脑 - 计算机接口(BCI)的分类,因为这些系统是BCI中的主要调查领域,因为这些系统可以增强具有严重残疾人的人们的生命。 BCI模型的性能主要取决于通过多个通道获得的特征向量的大小。在心理任务分类的情况下,培训样本的可用性最小。通常,特征选择用于通过摆脱无关紧要和多余的功能来增加心理任务分类的比率。本文提出了一种为精神任务分类选择相关和非冗余频谱特征的方法。这可以通过使用四个非常已知的多变量特征选择方法VIZ,BHATTACHARYA的距离,散射矩阵的比率,线性回归和最小冗余和最大相关性。这项工作还涉及对心理任务分类的多元和单变量特征选择的比较分析。在应用上述方法后,研究结果表明了精神任务分类的学习模型的性能的大量改进。此外,通过执行稳健的排名算法和弗里德曼的统计测试来认识所提出的方法的功效,以找到最佳组合并比较功率谱密度和特征选择方法的不同组合。
translated by 谷歌翻译
我们展示了一个新的数据集和基准,其目的是在大脑活动和眼球运动的交叉口中推进研究。我们的数据集EEGEYENET包括从三种不同实验范式中收集的356个不同受试者的同时脑电图(EEG)和眼睛跟踪(ET)录像。使用此数据集,我们还提出了一种评估EEG测量的凝视预测的基准。基准由三个任务组成,难度越来越高:左右,角度幅度和绝对位置。我们在该基准测试中运行大量实验,以便根据经典机器学习模型和大型神经网络提供实心基线。我们释放了我们的完整代码和数据,并提供了一种简单且易于使用的界面来评估新方法。
translated by 谷歌翻译
癫痫患者的长期监测来自实时检测和可穿戴设备设计的工程角度呈现出具有挑战性的问题。它需要新的解决方案,允许连续无阻碍的监控和可靠的癫痫发作检测和预测。在癫痫发作期间的人,脑状态和时间实例中存在脑电图(EEG)模式的高可变性,而且在非扣押期间。这使得癫痫癫痫发作检测非常具有挑战性,特别是如果数据仅在癫痫发作和非癫痫标签下分组。超方(HD)计算,一种新型机器学习方法,作为一个有前途的工具。但是,当数据显示高级别的可变性时,它具有一定的限制。因此,在这项工作中,我们提出了一种基于多心高清计算的新型半监督学习方法。多质心方法允许有几个代表癫痫发作和非癫痫发作状态的原型向量,这导致与简单的2级HD模型相比显着提高了性能。此外,现实生活数据不平衡造成了额外的挑战,并且在数据的平衡子集上报告的性能可能被高估。因此,我们测试我们的多质心方法,具有三个不同的数据集平衡方案,显示较少平衡数据集的性能提升更高。更具体地,在不平衡的测试集上实现了高达14%的改进,而不是比癫痫发作数据更加不癫痫发布的10倍。与此同时,与平衡数据集相比,子类的总数不会显着增加。因此,所提出的多质心方法可以是实现具有现实数据余额或在线学习期间实现高性能的重要因素,癫痫发作不常见。
translated by 谷歌翻译
神经影像动物和超越的几个问题需要对多任务稀疏分层回归模型参数的推断。示例包括M / EEG逆问题,用于基于任务的FMRI分析的神经编码模型,以及气候或CPU和GPU的温度监测。在这些域中,要推断的模型参数和测量噪声都可以表现出复杂的时空结构。现有工作要么忽略时间结构,要么导致计算苛刻的推论方案。克服这些限制,我们设计了一种新颖的柔性等级贝叶斯框架,其中模型参数和噪声的时空动态被建模为具有Kronecker产品协方差结构。我们的框架中的推断是基于大大化最小化优化,并有保证的收敛属性。我们高效的算法利用了时间自传矩阵的内在riemannian几何学。对于Toeplitz矩阵描述的静止动力学,采用了循环嵌入的理论。我们证明了Convex边界属性并导出了结果算法的更新规则。在来自M / EEG的合成和真实神经数据上,我们证明了我们的方法导致性能提高。
translated by 谷歌翻译
在神经科学领域,脑活动分析总是被认为是一个重要领域。精神分裂症(SZ)是一种严重影响世界各地人民的思想,行为和情感的大脑障碍。在Sz检测中被证明是一种有效的生物标志物的脑电图(EEG)。由于其非线性结构,EEG是非线性时间序列信号,并利用其进行调查,这是对其的影响。本文旨在利用深层学习方法提高基于EEG基于SZ检测的性能。已经提出了一种新的混合深度学习模型(精神分裂症混合神经网络),已经提出了卷积神经网络(CNN)和长短期存储器(LSTM)的组合。 CNN网络用于本地特征提取,LSTM已用于分类。所提出的模型仅与CNN,仅限LSTM和基于机器学习的模型进行了比较。已经在两个不同的数据集上进行了评估所有模型,其中数据集1由19个科目和数据集2组成,由16个科目组成。使用不同频带上的各种参数设置并在头皮上使用不同的电极组来进行几个实验。基于所有实验,显然提出的混合模型(SZHNN)与其他现有型号相比,拟议的混合模型(SZHNN)提供了99.9%的最高分类精度。该建议的模型克服了不同频带的影响,甚至没有5个电极显示出91%的更好的精度。该拟议的模型也在智能医疗保健和远程监控应用程序的医疗器互联网上进行评估。
translated by 谷歌翻译
在脑电图(EEG)的驾驶员的背景下,设计无校准系统仍然具有挑战性,因为EEG信号在不同的主题和录音会话之间显着变化。已经努力使用EEG信号的深度学习方法来利用精神状态识别。然而,现有工作主要将深入学习模型视为黑匣子分类器,而模型已经学习的是什么以及它们在脑电图数据中受到噪声的影响仍然是曝光的。在本文中,我们开发了一种新颖的卷积神经网络,可以通过突出显示包含分类重要信息的输入样本的本地区域来解释其决定。该网络具有紧凑的结构,利用可分离卷曲来处理空间序列中的EEG信号。结果表明,该模型在11个受试者上实现了78.35%的平均准确性,用于休假交叉对象嗜睡识别,其高于传统的基线方法为53.4%-72.68%和最先进的深层学习方法63.90%-65.78%。可视化结果表明,该模型已经学会了识别EEG信号的生物学可解释的特征,例如,α主轴,作为不同受试者的嗜睡的强指标。此外,我们还探讨了一些错误分类的样本背后的原因,具有可视化技术,并讨论了提高识别准确性的潜在方法。我们的作品说明了使用可解释的深度学习模型的有希望的方向,以从复杂的EEG信号发现与不同心理状态相关的有意义的模式。
translated by 谷歌翻译
网络流量数据是不同网络协议下不同数据字节数据包的组合。这些流量数据包具有复杂的时变非线性关系。现有的最先进的方法通过基于相关性和使用提取空间和时间特征的混合分类技术将特征融合到多个子集中,通过将特征融合到多个子集中来提高这一挑战。这通常需要高计算成本和手动支持,这限制了它们的网络流量的实时处理。为了解决这个问题,我们提出了一种基于协方差矩阵的新型新颖特征提取方法,提取网络流量数据的空间时间特征来检测恶意网络流量行为。我们所提出的方法中的协方差矩阵不仅自然地对不同网络流量值之间的相互关系进行了编码,而且还具有落在riemannian歧管中的明确的几何形状。利莫曼歧管嵌入距离度量,便于提取用于检测恶意网络流量的判别特征。我们在NSL-KDD和UNSW-NB15数据集上进行了评估模型,并显示了我们提出的方法显着优于与数据集上的传统方法和其他现有研究。
translated by 谷歌翻译
基于EEG的基于EEG的情感识别(EEG-ER)与消费者级EEG器件涉及使用减少数量的通道进行语调。这些设备通常仅提供四个或五个通道,与通常在最新的最先进的研究中通常使用的大量信道(32或更多)不同。在这项工作中,我们建议使用离散小波变换(DWT)来提取时间频域特征,并且我们使用几秒钟的时间窗口来执行EEG-ER分类。该技术可以实时使用,而不是在HOC上完成完整会话数据。我们还应用了在现有研究中开发的基线拆卸预处理,以我们提出的DWT熵和能量特征,这显着提高了分类精度。我们考虑两个不同的分类器架构,一个3D卷积神经网络(3D CNN)和支持向量机(SVM)。我们在主题和主题依赖设置上评估两个模型,以分类个人情绪状态的价值和唤醒维度。我们在Deap DataSet提供的完整32通道数据上测试它们,以及相同数据集的减少的5通道提取物。 SVM模型在所有呈现的场景上表现最佳,在唤起完整的32通道主题案例的唤醒时,在价值上实现95.32%的精度,95.68%,以前的实时EEG-EEG-EEG-EEG-EEG对象依赖性基准。在独立的案例上,还获得了80.70%的准确度,唤醒的唤醒器中的81.41%。将输入数据减少到5个通道仅在所有场景中平均降低3.54%,这使得该型号适合使用更可访问的低端EEG器件。
translated by 谷歌翻译
来自世界卫生组织的现行指南表明,萨尔科夫-2冠状病毒导致新型冠状病毒疾病(Covid-19),通过呼吸液滴或通过接触传输。当受污染的双手触摸嘴巴,鼻子或眼睛的粘膜时,会发生接触传输。此外,病原体也可以通过受污染的手从一个表面转移到另一个表面,这便于通过间接接触传输。因此,手卫生极为重要,无法防止萨尔库夫-2病毒的传播。此外,手工洗涤和/或手摩擦也破坏了其他病毒和细菌的传播,引起常见的感冒,流感和肺炎,从而降低了整体疾病负担。可穿戴设备(如Smartwatches)的巨大扩散,包括加速,旋转,磁场传感器等,以及人工智能的现代技术,如机器学习和最近深度学习,允许开发准确的应用人类活动的认可和分类,如:步行,攀爬楼梯,跑步,拍手,坐着,睡觉等。在这项工作中,我们评估了基于当前智能手​​表的自动系统的可行性,该智能手表能够识别何时受试者洗涤或摩擦它的手,以监测频率和持续时间的参数,并评估手势的有效性。我们的初步结果显示了分别为深度和标准学习技术的约95%和约94%的分类准确性。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
目的:提出使用深神经网络(DNN)的新型SSVEP分类方法,提高单通道和用户独立的脑电电脑接口(BCIS)的性能,具有小的数据长度。方法:我们建议与DNN结合使用过滤器组(创建EEG信号的子带分量)。在这种情况下,我们创建了三种不同的模型:经常性的神经网络(FBRNN)分析时域,2D卷积神经网络(FBCNN-2D)处理复谱特征和3D卷积神经网络(FBCNN-3D)分析复杂谱图,我们在本研究中介绍了SSVEP分类的可能输入。我们通过开放数据集培训了我们的神经网络,并构思了它们,以便不需要从最终用户校准:因此,测试主题数据与训练和验证分开。结果:带滤波器银行的DNN超越了类似网络的准确性,在没有相当大的边距(高达4.6%)的情况下,它们甚至更高的边距(高达7.1%)超越了常见的SSVEP分类方法(SVM和FBCCA) 。在使用过滤器银行中的三个DNN中,FBRNN获得了最佳结果,然后是FBCNN-3D,最后由FBCNN-2D获得。结论和意义:滤波器银行允许不同类型的深神经网络,以更有效地分析SSVEP的谐波分量。复谱图比复杂频谱特征和幅度谱进行更多信息,允许FBCNN-3D超越另一个CNN。在具有挑战性的分类问题中获得的平均测试精度(87.3%)和F1分数(0.877)表示施工,经济,快速和低延迟BCIS建设的强大潜力。
translated by 谷歌翻译
信号处理是几乎任何传感器系统的基本组件,具有不同科学学科的广泛应用。时间序列数据,图像和视频序列包括可以增强和分析信息提取和量化的代表性形式的信号。人工智能和机器学习的最近进步正在转向智能,数据驱动,信号处理的研究。该路线图呈现了最先进的方法和应用程序的关键概述,旨在突出未来的挑战和对下一代测量系统的研究机会。它涵盖了广泛的主题,从基础到工业研究,以简明的主题部分组织,反映了每个研究领域的当前和未来发展的趋势和影响。此外,它为研究人员和资助机构提供了识别新前景的指导。
translated by 谷歌翻译
背景。通常,深度神经网络(DNN)概括了从类似于训练集的分布的样本概括。然而,当测试样本从不同的分布中抽出时,DNNS的预测是脆性和不可靠的。这是在现实世界应用中部署的主要关注点,这种行为可能以相当大的成本,例如工业生产线,自治车辆或医疗保健应用。贡献。我们将DNN中的分布(OOD)检测出来作为统计假设检测问题。在我们所提出的框架内产生的测试将证据组合来自整个网络。与以前的检测启发式不同,此框架返回每个测试样本的$ p $ -value。有保证维护I型错误(T1E - 错误地识别OOD样本为ID)进行测试数据。此外,这允许在保持T1E的同时组合多个检测器。在此框架上建立,我们建议一种基于低阶统计数据的新型程序。我们的方法在不接受的EOD基准上的最新方法实现了比较或更好的结果,而无需再培训网络参数或假设测试分配的现有知识 - 并且以计算成本的一小部分。
translated by 谷歌翻译
对医疗保健监控的远程工具的需求从未如此明显。摄像机测量生命体征利用成像装置通过分析人体的图像来计算生理变化。建立光学,机器学习,计算机视觉和医学的进步这些技术以来的数码相机的发明以来已经显着进展。本文介绍了对生理生命体征的相机测量综合调查,描述了它们可以测量的重要标志和实现所做的计算技术。我涵盖了临床和非临床应用以及这些应用需要克服的挑战,以便从概念上推进。最后,我描述了对研究社区可用的当前资源(数据集和代码),并提供了一个全面的网页(https://cameravitals.github.io/),其中包含这些资源的链接以及其中引用的所有文件的分类列表文章。
translated by 谷歌翻译
近年来,基于生理信号的认证表现出伟大的承诺,因为其固有的对抗伪造的鲁棒性。心电图(ECG)信号是最广泛研究的生物关像,也在这方面获得了最高的关注。已经证明,许多研究通过分析来自不同人的ECG信号,可以识别它们,可接受的准确性。在这项工作中,我们展示了EDITH,EDITH是一种基于深入的ECG生物识别认证系统的框架。此外,我们假设并证明暹罗架构可以在典型的距离指标上使用,以提高性能。我们使用4个常用的数据集进行了评估了伊迪丝,并使用少量节拍表现优于先前的工作。 Edith使用仅单一的心跳(精度为96-99.75%)进行竞争性,并且可以通过融合多个节拍(从3到6个节拍的100%精度)进一步提高。此外,所提出的暹罗架构管理以将身份验证等错误率(eer)降低至1.29%。具有现实世界实验数据的Edith的有限案例研究还表明其作为实际认证系统的潜力。
translated by 谷歌翻译
最近的智能故障诊断(IFD)的进展大大依赖于深度代表学习和大量标记数据。然而,机器通常以各种工作条件操作,或者目标任务具有不同的分布,其中包含用于训练的收集数据(域移位问题)。此外,目标域中的新收集的测试数据通常是未标记的,导致基于无监督的深度转移学习(基于UDTL为基础的)IFD问题。虽然它已经实现了巨大的发展,但标准和开放的源代码框架以及基于UDTL的IFD的比较研究尚未建立。在本文中,我们根据不同的任务,构建新的分类系统并对基于UDTL的IFD进行全面审查。对一些典型方法和数据集的比较分析显示了基于UDTL的IFD中的一些开放和基本问题,这很少研究,包括特征,骨干,负转移,物理前导等的可转移性,强调UDTL的重要性和再现性 - 基于IFD,整个测试框架将发布给研究界以促进未来的研究。总之,发布的框架和比较研究可以作为扩展界面和基本结果,以便对基于UDTL的IFD进行新的研究。代码框架可用于\ url {https:/github.com/zhaozhibin/udtl}。
translated by 谷歌翻译
可说明的人工智能(XAI)的目前的模型显示出在提出统计上纠缠特征时,可以显而易见和量化缺乏可靠性,当提出统计上纠缠的特征时,为训练深层分类器。深度学习在临床试验中的应用增加了预测神经发育障碍的早期诊断,如自闭症谱系障碍(ASD)。然而,包含更可靠的显着图,以获得使用神经活动特征的更可靠和可解释的度量,对于诊断或临床试验中的实际应用仍然不充分。此外,在ASD研究中,包含使用神经措施来预测观察面部情绪的深层分类器相对未探索。因此,在本研究中,我们提出了对脑电图(EEG)的卷积神经网络(CNN)的评估,用于基于新颖的删除(咆哮)方法,以恢复分类器中使用的高度相关特征。具体而言,我们比较众所周知的相关性图,例如层性相关性传播(LRP),图案网络,图案归因和平滑级平方。本研究是第一个在通常开发的和ASD个体中使用内部训练的CNN内训练的基于EEG的面部情感识别来实现更透明的特征相关计算。
translated by 谷歌翻译
由于更高的维度和困难的班级,机器学习应用中的可用数据变得越来越复杂。根据类重叠,可分离或边界形状,以及组形态,存在各种各样的方法来测量标记数据的复杂性。许多技术可以转换数据才能找到更好的功能,但很少专注于具体降低数据复杂性。大多数数据转换方法主要是治疗维度方面,撇开类标签中的可用信息,当类别在某种方式复杂时,可以有用。本文提出了一种基于AutoEncoder的复杂性减少方法,使用类标签来告知损耗函数关于所生成的变量的充分性。这导致了三个不同的新功能学习者,得分手,斯卡尔和切片机。它们基于Fisher的判别比率,Kullback-Leibler发散和最小二乘支持向量机。它们可以作为二进制分类问题应用作为预处理阶段。跨越27个数据集和一系列复杂性和分类指标的彻底实验表明,课堂上通知的AutoEncoders执行优于4个其他流行的无监督功能提取技术,特别是当最终目标使用数据进行分类任务时。
translated by 谷歌翻译
机器学习在医学图像分析中发挥着越来越重要的作用,产卵在神经影像症的临床应用中的新进展。之前有一些关于机器学习和癫痫的综述,它们主要专注于电生理信号,如脑电图(EEG)和立体脑电图(SEENG),同时忽略癫痫研究中神经影像的潜力。 NeuroImaging在确认癫痫区域的范围内具有重要的优点,这对于手术后的前诊所评估和评估至关重要。然而,脑电图难以定位大脑中的准确癫痫病变区。在这篇综述中,我们强调了癫痫诊断和预后在癫痫诊断和预后的背景下神经影像学和机器学习的相互作用。我们首先概述癫痫诊所,MRI,DWI,FMRI和PET中使用的癫痫和典型的神经影像姿态。然后,我们在将机器学习方法应用于神经影像数据的方法:i)将手动特征工程和分类器的传统机器学习方法阐述了两种方法,即卷积神经网络和自动化器等深度学习方法。随后,详细地研究了对癫痫,定位和横向化任务等分割,本地化和横向化任务的应用,以及与诊断和预后直接相关的任务。最后,我们讨论了目前的成就,挑战和潜在的未来方向,希望为癫痫的计算机辅助诊断和预后铺平道路。
translated by 谷歌翻译