Submpling是解决大数据带来的计算挑战的重要技术。许多子采样程序属于重要性采样的框架内,这为出现很大影响的样本分配了高采样概率。当噪声水平很高时,那些采样程序倾向于挑选许多异常值,因此通常在实践中往往不会令人满意地表现。为了解决这个问题,我们设计基于Huber标准(HMS)的新的马尔可夫分支策略,以构造来自嘈杂的完整数据的信息副;然后,构造的子集用作精制的工作数据,以便有效处理。 HMS建立在大都会加速程序之上,其中使用HUBER标准确定每个采样单元的包含概率,以防止对异常值进行评分。在温和条件下,我们表明基于HMS选择的子样本的估计器与子高斯偏差绑定的统计上一致。通过大规模模拟和实际数据示例的广泛研究证明了HMS的有希望的性能。
translated by 谷歌翻译
由于其对异常值和重型噪音的鲁棒性,模态回归是广泛使用的回归协议,在统计和机器学习社区中被广泛调查。了解模态回归的理论行为可以是学习理论的基础。尽管在表征其统计财产方面取得了重大进展,但大多数结果都是基于样本是独立的和相同的分布式(I.I.D.)的假设,这对于现实世界的应用来说是过于限制的。本文涉及在重要依赖结构中正规化的模态回归(RMR)的统计性质 - 马尔可夫依赖。具体而言,我们在中等条件下建立RMR估计器的上限,并提供明确的学习率。我们的结果表明,马尔可夫依赖于根据底层马尔可夫链的光谱间隙,样本大小通过乘法因子折扣的方式对泛化误差的影响。这结果揭示了对特征的新光线,以实现鲁棒回归的理论为基础。
translated by 谷歌翻译
High-dimensional data can often display heterogeneity due to heteroscedastic variance or inhomogeneous covariate effects. Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data. The former is computationally challenging due to the non-smooth nature of the check loss, and the latter is sensitive to heavy-tailed error distributions. In this paper, we propose and study (penalized) robust expectile regression (retire), with a focus on iteratively reweighted $\ell_1$-penalization which reduces the estimation bias from $\ell_1$-penalization and leads to oracle properties. Theoretically, we establish the statistical properties of the retire estimator under two regimes: (i) low-dimensional regime in which $d \ll n$; (ii) high-dimensional regime in which $s\ll n\ll d$ with $s$ denoting the number of significant predictors. In the high-dimensional setting, we carefully characterize the solution path of the iteratively reweighted $\ell_1$-penalized retire estimation, adapted from the local linear approximation algorithm for folded-concave regularization. Under a mild minimum signal strength condition, we show that after as many as $\log(\log d)$ iterations the final iterate enjoys the oracle convergence rate. At each iteration, the weighted $\ell_1$-penalized convex program can be efficiently solved by a semismooth Newton coordinate descent algorithm. Numerical studies demonstrate the competitive performance of the proposed procedure compared with either non-robust or quantile regression based alternatives.
translated by 谷歌翻译
在本文中,我们利用过度参数化来设计高维单索索引模型的无规矩算法,并为诱导的隐式正则化现象提供理论保证。具体而言,我们研究了链路功能是非线性且未知的矢量和矩阵单索引模型,信号参数是稀疏向量或低秩对称矩阵,并且响应变量可以是重尾的。为了更好地理解隐含正规化的角色而没有过度的技术性,我们假设协变量的分布是先验的。对于载体和矩阵设置,我们通过采用分数函数变换和专为重尾数据的强大截断步骤来构造过度参数化最小二乘损耗功能。我们建议通过将无规则化的梯度下降应用于损耗函数来估计真实参数。当初始化接近原点并且步骤中足够小时,我们证明了所获得的解决方案在载体和矩阵案件中实现了最小的收敛统计速率。此外,我们的实验结果支持我们的理论调查结果,并表明我们的方法在$ \ ell_2 $ -staticatisticated率和变量选择一致性方面具有明确的正则化的经验卓越。
translated by 谷歌翻译
当我们对优化模型中的不确定参数进行观察以及对协变量的同时观察时,我们研究了数据驱动决策的优化。鉴于新的协变量观察,目标是选择一个决定以此观察为条件的预期成本的决定。我们研究了三个数据驱动的框架,这些框架将机器学习预测模型集成在随机编程样本平均值近似(SAA)中,以近似解决该问题的解决方案。 SAA框架中的两个是新的,并使用了场景生成的剩余预测模型的样本外残差。我们研究的框架是灵活的,并且可以容纳参数,非参数和半参数回归技术。我们在数据生成过程,预测模型和随机程序中得出条件,在这些程序下,这些数据驱动的SaaS的解决方案是一致且渐近最佳的,并且还得出了收敛速率和有限的样本保证。计算实验验证了我们的理论结果,证明了我们数据驱动的公式比现有方法的潜在优势(即使预测模型被误解了),并说明了我们在有限的数据制度中新的数据驱动配方的好处。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
在机器学习和高维统计领域的有限样本理论中,恒定指定的浓度不平等至关重要。我们获得了独立亚网络随机变量总和的更清晰和常数的浓度不平等,这导致了两个尾巴的混合物:尺寸的小偏差和较大偏差的小偏差。这些界限是新的,并通过更清晰的常数改善了现有的界限。另外,如果应保留斜体,则新的子韦布尔参数。请检查整个文本。还提出了提出的,它可以为随机变量(向量)恢复紧密浓度不平等。对于统计应用,我们给出了$ \ ell_2 $ - 估计系数在负二项式回归中的估计系数时,当重尾协变量是稀疏结构分布的亚weibull时,这是负二项式回归的新结果。在应用随机矩阵时,我们得出了Bai-Yin定理的非反应版本,用于具有指数尾巴边界的亚weibull条目。最后,通过为没有第二瞬间条件的对数截断的Z-测验器演示一个子静电区域,我们讨论并定义了独立观测值的sub-weibull类型稳健估计器$ \ {x_i \} _ {i = 1 }^{n} $没有指数矩条件。
translated by 谷歌翻译
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice. They perform poorly out of sample due to estimation error, they experience extreme weights together with high sensitivity to change in input parameters. The heavy-tail characteristics of financial time series are in fact the cause for these erratic fluctuations of weights that consequently create substantial transaction costs. In robustifying the weights we present a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios. Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and inversion of the covariance operator as a whole and concentrate on robust estimation of the gradient descent increment. Using modern tools of robust statistics we construct a computationally efficient estimator with almost Gaussian properties based on median-of-means uniformly over weights. This robustified Markowitz approach is confirmed by empirical studies on equity markets. We demonstrate that robustified portfolios reach the lowest turnover compared to shrinkage-based and constrained portfolios while preserving or slightly improving out-of-sample performance.
translated by 谷歌翻译
重要性采样(IS)是一种使用来自建议分布和相关重要性权重的独立样本在目标分布下近似期望的方法。在许多应用中,只有直到归一化常数才知道目标分布,在这种情况下,可以使用自称为(SNIS)。虽然自我正态化的使用可能会对估计量的分散产生积极影响,但它引入了偏见。在这项工作中,我们提出了一种新方法BR-SNIS,其复杂性与SNI的复杂性基本相同,并且显着降低了偏见而不增加差异。这种方法是一种包装器,从某种意义上说,它使用了与SNIS相同的建议样本和重要性权重,但巧妙地使用了迭代采样(ISIR)重新采样(ISIR)来形成估算器的偏置版本。我们为提出的算法提供了严格的理论结果,包括新的偏见,方差和高概率界限,这些算法由数值示例进行了说明。
translated by 谷歌翻译
我们证明了连续和离散时间添加功能的浓度不平等和相关的PAC界限,用于可能是多元,不可逆扩散过程的无界函数。我们的分析依赖于通过泊松方程的方法,使我们能够考虑一系列非常广泛的指数性千古过程。这些结果增加了现有的浓度不平等,用于扩散过程的加性功能,这些功能仅适用于有界函数或从明显较小的类别中的过程的无限函数。我们通过两个截然不同的区域的例子来证明这些指数不平等的力量。考虑到在稀疏性约束下可能具有高维参数非线性漂移模型,我们应用连续的时间浓度结果来验证套索估计的受限特征值条件,这对于甲骨文不平等的推导至关重要。离散添加功能的结果用于研究未经调整的Langevin MCMC算法,用于采样中等重尾密度$ \ pi $。特别是,我们为多项式增长功能$ f $的样品蒙特卡洛估计量$ \ pi(f)提供PAC边界,以量化足够的样本和阶梯尺寸,以在规定的边距内近似具有很高的可能性。
translated by 谷歌翻译
在本文中,我们提出了一种均匀抖动的一位量化方案,以进行高维统计估计。该方案包含截断,抖动和量化,作为典型步骤。作为规范示例,量化方案应用于三个估计问题:稀疏协方差矩阵估计,稀疏线性回归和矩阵完成。我们研究了高斯和重尾政权,假定重尾数据的基本分布具有有限的第二或第四刻。对于每个模型,我们根据一位量化的数据提出新的估计器。在高斯次级政权中,我们的估计器达到了对数因素的最佳最小速率,这表明我们的量化方案几乎没有额外的成本。在重尾状态下,虽然我们的估计量基本上变慢,但这些结果是在这种单位量化和重型尾部设置中的第一个结果,或者比现有可比结果表现出显着改善。此外,我们为一位压缩传感和一位矩阵完成的问题做出了巨大贡献。具体而言,我们通过凸面编程将一位压缩感传感扩展到次高斯甚至是重尾传感向量。对于一位矩阵完成,我们的方法与标准似然方法基本不同,并且可以处理具有未知分布的预量化随机噪声。提出了有关合成数据的实验结果,以支持我们的理论分析。
translated by 谷歌翻译
我们在高维批处理设置中提出了统计上健壮和计算高效的线性学习方法,其中功能$ d $的数量可能超过样本量$ n $。在通用学习环境中,我们采用两种算法,具体取决于所考虑的损失函数是否为梯度lipschitz。然后,我们将我们的框架实例化,包括几种应用程序,包括香草稀疏,群 - 帕克斯和低升级矩阵恢复。对于每种应用,这导致了有效而强大的学习算法,这些算法在重尾分布和异常值的存在下达到了近乎最佳的估计率。对于香草$ S $ -SPARSITY,我们能够以重型尾巴和$ \ eta $ - 腐败的计算成本与非企业类似物相当的计算成本达到$ s \ log(d)/n $速率。我们通过开放源代码$ \ mathtt {python} $库提供了有效的算法实现文献中提出的最新方法。
translated by 谷歌翻译
Influence diagnostics such as influence functions and approximate maximum influence perturbations are popular in machine learning and in AI domain applications. Influence diagnostics are powerful statistical tools to identify influential datapoints or subsets of datapoints. We establish finite-sample statistical bounds, as well as computational complexity bounds, for influence functions and approximate maximum influence perturbations using efficient inverse-Hessian-vector product implementations. We illustrate our results with generalized linear models and large attention based models on synthetic and real data.
translated by 谷歌翻译
在本文中,我们研究了经验$ \ ell_2 $最小化(erm)的估计性能(标准)阶段检索(NPR),由$ y_k = | \ alpha_k^*x_0 |^2+\ eta_k $,或嘈杂的广义阶段检索(NGPR)以$ y_k = x_0^*a_kx_0 + \ eta_k $,其中$ x_0 \ in \ mathbb {k}^d $是所需的信号,$ n $是样本大小,$ \ eta =(\ eta_1,...,\ eta_n)^\ top $是噪声向量。我们在不同的噪声模式下建立了新的错误界限,我们的证明对$ \ mathbb {k} = \ mathbb {r} $和$ \ mathbb {k} = \ mathbb {c} $有效。在任意噪声向量$ \ eta $下的NPR中,我们得出了一个新的错误$ o \ big(\ | \ eta \ | _ \ | _ \ infty \ sqrt {\ frac {d} {1}^\ top \ eta |} {n} \ big)$,它比当前已知的一个$ o \ big(\ frac {\ | \ eTa \ |} {\ sqrt {\ sqrt {n}} \ big big )$在许多情况下。在NGPR中,我们显示了$ o \ big(\ | \ eta \ | \ frac {\ sqrt {d}}} {n} {n} \ big)$ for nutary $ \ eta $。在这两个问题上,任意噪声的范围立即引起$ \ tilde {o}(\ sqrt {\ frac {d} {n}}}})$,用于次高斯或次指数随机噪声,带有一些常规但不可吻的去除或削弱的假设(例如,独立或均值均值的条件)。此外,我们首次尝试在假定$ l $ -th时刻的重尾随机噪声下进行ERM。为了实现偏见和差异之间的权衡,我们截断了响应并提出了相应的稳健ERM估计器,该估计量具有保证$ \ tilde {o} \ big(\ big [\ sqrt {\ frac {\ frac {d}) {n}} \ big]^{1-1/l} \ big)$在NPR,NGPR中。所有错误都直接扩展到等级$ r $矩阵恢复的更普遍的问题,这些结果得出的结论是,全级框架$ \ {a_k \} _ {k = 1}^n $ in ngpr是比级别1帧$ \ {\ alpha_k \ alpha_k^*\} _ {k = 1}^n $在npr中更强大。提出了广泛的实验结果,以说明我们的理论发现。
translated by 谷歌翻译
我们解决了如何在没有严格缩放条件的情况下实现分布式分数回归中最佳推断的问题。由于分位数回归(QR)损失函数的非平滑性质,这是具有挑战性的,这使现有方法的使用无效。难度通过应用于本地(每个数据源)和全局目标函数的双光滑方法解决。尽管依赖局部和全球平滑参数的精致组合,但分位数回归模型是完全参数的,从而促进了解释。在低维度中,我们为顺序定义的分布式QR估计器建立了有限样本的理论框架。这揭示了通信成本和统计错误之间的权衡。我们进一步讨论并比较了基于WALD和得分型测试和重采样技术的反转的几种替代置信集结构,并详细介绍了对更极端分数系数有效的改进。在高维度中,采用了一个稀疏的框架,其中提出的双滑目标功能与$ \ ell_1 $ -penalty相辅相成。我们表明,相应的分布式QR估计器在近乎恒定的通信回合之后达到了全球收敛率。一项彻底的模拟研究进一步阐明了我们的发现。
translated by 谷歌翻译
This paper studies the quantization of heavy-tailed data in some fundamental statistical estimation problems, where the underlying distributions have bounded moments of some order. We propose to truncate and properly dither the data prior to a uniform quantization. Our major standpoint is that (near) minimax rates of estimation error are achievable merely from the quantized data produced by the proposed scheme. In particular, concrete results are worked out for covariance estimation, compressed sensing, and matrix completion, all agreeing that the quantization only slightly worsens the multiplicative factor. Besides, we study compressed sensing where both covariate (i.e., sensing vector) and response are quantized. Under covariate quantization, although our recovery program is non-convex because the covariance matrix estimator lacks positive semi-definiteness, all local minimizers are proved to enjoy near optimal error bound. Moreover, by the concentration inequality of product process and covering argument, we establish near minimax uniform recovery guarantee for quantized compressed sensing with heavy-tailed noise.
translated by 谷歌翻译
套索是一种高维回归的方法,当时,当协变量$ p $的订单数量或大于观测值$ n $时,通常使用它。由于两个基本原因,经典的渐近态性理论不适用于该模型:$(1)$正规风险是非平滑的; $(2)$估算器$ \ wideHat {\ boldsymbol {\ theta}} $与true参数vector $ \ boldsymbol {\ theta}^*$无法忽略。结果,标准的扰动论点是渐近正态性的传统基础。另一方面,套索估计器可以精确地以$ n $和$ p $大,$ n/p $的订单为一。这种表征首先是在使用I.I.D的高斯设计的情况下获得的。协变量:在这里,我们将其推广到具有非偏差协方差结构的高斯相关设计。这是根据更简单的``固定设计''模型表示的。我们在两个模型中各种数量的分布之间的距离上建立了非反应界限,它们在合适的稀疏类别中均匀地固定在信号上$ \ boldsymbol {\ theta}^*$。作为应用程序,我们研究了借助拉索的分布,并表明需要校正程度对于计算有效的置信区间是必要的。
translated by 谷歌翻译
We study the fundamental task of outlier-robust mean estimation for heavy-tailed distributions in the presence of sparsity. Specifically, given a small number of corrupted samples from a high-dimensional heavy-tailed distribution whose mean $\mu$ is guaranteed to be sparse, the goal is to efficiently compute a hypothesis that accurately approximates $\mu$ with high probability. Prior work had obtained efficient algorithms for robust sparse mean estimation of light-tailed distributions. In this work, we give the first sample-efficient and polynomial-time robust sparse mean estimator for heavy-tailed distributions under mild moment assumptions. Our algorithm achieves the optimal asymptotic error using a number of samples scaling logarithmically with the ambient dimension. Importantly, the sample complexity of our method is optimal as a function of the failure probability $\tau$, having an additive $\log(1/\tau)$ dependence. Our algorithm leverages the stability-based approach from the algorithmic robust statistics literature, with crucial (and necessary) adaptations required in our setting. Our analysis may be of independent interest, involving the delicate design of a (non-spectral) decomposition for positive semi-definite matrices satisfying certain sparsity properties.
translated by 谷歌翻译
In the classical setting of self-selection, the goal is to learn $k$ models, simultaneously from observations $(x^{(i)}, y^{(i)})$ where $y^{(i)}$ is the output of one of $k$ underlying models on input $x^{(i)}$. In contrast to mixture models, where we observe the output of a randomly selected model, here the observed model depends on the outputs themselves, and is determined by some known selection criterion. For example, we might observe the highest output, the smallest output, or the median output of the $k$ models. In known-index self-selection, the identity of the observed model output is observable; in unknown-index self-selection, it is not. Self-selection has a long history in Econometrics and applications in various theoretical and applied fields, including treatment effect estimation, imitation learning, learning from strategically reported data, and learning from markets at disequilibrium. In this work, we present the first computationally and statistically efficient estimation algorithms for the most standard setting of this problem where the models are linear. In the known-index case, we require poly$(1/\varepsilon, k, d)$ sample and time complexity to estimate all model parameters to accuracy $\varepsilon$ in $d$ dimensions, and can accommodate quite general selection criteria. In the more challenging unknown-index case, even the identifiability of the linear models (from infinitely many samples) was not known. We show three results in this case for the commonly studied $\max$ self-selection criterion: (1) we show that the linear models are indeed identifiable, (2) for general $k$ we provide an algorithm with poly$(d) \exp(\text{poly}(k))$ sample and time complexity to estimate the regression parameters up to error $1/\text{poly}(k)$, and (3) for $k = 2$ we provide an algorithm for any error $\varepsilon$ and poly$(d, 1/\varepsilon)$ sample and time complexity.
translated by 谷歌翻译
在线性回归中,我们希望根据少量样本估算超过$ d $维的输入点和实价响应的最佳最小二乘预测。根据标准随机设计分析,其中绘制样品i.i.d。从输入分布中,该样品的最小二乘解决方案可以看作是最佳的自然估计器。不幸的是,该估计器几乎总是产生来自输入点的随机性的不良偏置,这在模型平均中是一个重要的瓶颈。在本文中,我们表明可以绘制非i.i.d。输入点的样本,无论响应模型如何,最小二乘解决方案都是最佳的无偏估计器。此外,可以通过增强先前绘制的I.I.D。可以有效地生产该样本。带有额外的$ d $点的样品,根据点由点跨越的平方量重新缩放的输入分布构建的一定确定点过程,共同绘制。在此激励的基础上,我们开发了一个理论框架来研究体积响应的采样,并在此过程中证明了许多新的矩阵期望身份。我们使用它们来表明,对于任何输入分布和$ \ epsilon> 0 $,有一个随机设计由$ o(d \ log d+ d+ d+ d/\ epsilon)$点,从中可以从中构造出无偏见的估计器,其预期的是正方形损耗在整个发行版中,$ 1+\ epsilon $ times最佳损失。我们提供有效的算法来在许多实际设置中生成这种无偏估计量,并在实验中支持我们的主张。
translated by 谷歌翻译