慢性肾脏疾病(CKD)代表一种缓慢进行的疾病,最终可能需要肾脏替代疗法(RRT),包括透析或肾移植。例如,对需要RRT的患者(提前1年)的早期鉴定可以改善患者的预后,例如,通过允许更高质量的透析血管通道。因此,护理团队对RRT的需求的早期认识是成功管理该疾病的关键。不幸的是,目前没有常用的RRT启动预测工具。在这项工作中,我们提出了一种机器学习模型,该模型可以动态地识别有可能需要RRT的CKD患者,最多只使用索赔数据。为了评估该模型,我们研究了大约300万Medicare受益人,我们做出了超过800万个预测。我们表明该模型可以识别出超过90%敏感性和特异性的风险患者。尽管在准备临床使用之前需要进行其他工作,但本研究为筛查工具提供了一个基础,以在时间窗口内识别有风险的患者,以实现旨在改善RRT结果的早期主动干预措施。
translated by 谷歌翻译
30天的医院再入院是一个长期存在的医疗问题,会影响患者的发病率和死亡率,每年造成数十亿美元的损失。最近,已经创建了机器学习模型来预测特定疾病患者的住院再入院风险,但是不存在任何模型来预测所有患者的风险。我们开发了一个双向长期记忆(LSTM)网络,该网络能够使用随时可用的保险数据(住院访问,门诊就诊和药物处方)来预测任何入院患者的30天重新入选,无论其原因如何。使用历史,住院和入院后数据时,表现最佳模型的ROC AUC为0.763(0.011)。 LSTM模型显着优于基线随机森林分类器,表明了解事件的顺序对于模型预测很重要。与仅住院数据相比,与住院数据相比,将30天的历史数据纳入也显着改善了模型性能,这表明患者入院前的临床病史,包括门诊就诊和药房数据是重新入院的重要贡献者。我们的结果表明,机器学习模型能够使用结构化保险计费数据以合理的准确性来预测住院再入院的风险。由于可以从网站中提取计费数据或同等代理人,因此可以部署此类模型以识别有入院风险的患者,或者分配更多可靠的随访(更近的后续后续,家庭健康,邮寄药物) - 出院后风险患者。
translated by 谷歌翻译
Importance: The prevalence of severe mental illnesses (SMIs) in the United States is approximately 3% of the whole population. The ability to conduct risk screening of SMIs at large scale could inform early prevention and treatment. Objective: A scalable machine learning based tool was developed to conduct population-level risk screening for SMIs, including schizophrenia, schizoaffective disorders, psychosis, and bipolar disorders,using 1) healthcare insurance claims and 2) electronic health records (EHRs). Design, setting and participants: Data from beneficiaries from a nationwide commercial healthcare insurer with 77.4 million members and data from patients from EHRs from eight academic hospitals based in the U.S. were used. First, the predictive models were constructed and tested using data in case-control cohorts from insurance claims or EHR data. Second, performance of the predictive models across data sources were analyzed. Third, as an illustrative application, the models were further trained to predict risks of SMIs among 18-year old young adults and individuals with substance associated conditions. Main outcomes and measures: Machine learning-based predictive models for SMIs in the general population were built based on insurance claims and EHR.
translated by 谷歌翻译
深度学习已被证明可以准确评估“隐藏”表型,并从传统临床医生对医学成像的解释之外的医学成像中预测生物标志物。鉴于人工智能(AI)模型的黑匣子性质,应在将模型应用于医疗保健时谨慎,因为预测任务可能会因疾病和患者人群的人口统计学差异而短路。使用来自两个医疗保健系统的大超声心动图数据集,我们测试使用深度学习算法从心脏超声图像中预测年龄,种族和性别,并评估各种混杂变量的影响。我们培训了基于视频的卷积神经网络,以预测年龄,性别和种族。我们发现,深度学习模型能够确定年龄和性别,同时无法可靠地预测种族。不考虑类别之间的混淆差异,AI模型预测性别为0.85(95%CI 0.84-0.86),年龄为9.12年的平均绝对误差为9.12年(95%CI 9.00-9.25),从AUC进行竞赛, 0.63-0.71。在预测种族时,我们表明,在培训数据中调整混杂变量(性别)的比例会显着影响AUC(从0.57到0.84),而在训练性别预测模型中,调整混杂因素(Race)并未实质性更改AUC(0.81-0.83)。这表明该模型在预测种族方面的表现很大一部分可能来自AI检测到的混杂功能。进一步的工作仍然是确定与人口统计信息相关的特定成像功能,并更好地了解医学AI中人口统计学识别的风险,因为它与潜在的偏见和差异有关。
translated by 谷歌翻译
电子健康记录(EHRS)在患者级别汇总了多种信息,并保留了整个时间内患者健康状况进化的轨迹代表。尽管此信息提供了背景,并且可以由医生利用以监控患者的健康并进行更准确的预后/诊断,但患者记录可以包含长期跨度的信息,这些信息与快速生成的医疗数据速率相结合,使临床决策变得更加复杂。患者轨迹建模可以通过以可扩展的方式探索现有信息来帮助,并可以通过促进预防医学实践来增强医疗保健质量。我们为建模患者轨迹提出了一种解决方案,该解决方案结合了不同类型的信息并考虑了临床数据的时间方面。该解决方案利用了两种不同的架构:一组支持灵活的输入功能集,以将患者的录取转换为密集的表示;以及在基于复发的架构中进行的第二次探索提取的入院表示,其中使用滑动窗口机制在子序列中处理患者轨迹。使用公开可用的模仿III临床数据库评估了开发的解决方案,以两种不同的临床结果,意外的患者再入院和疾病进展。获得的结果证明了第一个体系结构使用单个患者入院进行建模和诊断预测的潜力。虽然临床文本中的信息并未显示在其他现有作品中观察到的判别能力,但这可以通过微调临床模型来解释。最后,我们使用滑动窗口机制来表示基于序列的体系结构的潜力,以表示输入数据,从而获得与其他现有解决方案的可比性能。
translated by 谷歌翻译
疾病鉴定是观察健康研究中的核心,常规活动。队列影响下游分析,例如如何表征病情,定义患者的风险以及研究哪些治疗方法。因此,至关重要的是要确保选定的队列代表所有患者,而与他们的人口统计学或社会决定因素无关。虽然在构建可能影响其公平性的表型定义时有多种潜在的偏见来源,但在表型领域中考虑不同定义在患者亚组中的影响并不是标准。在本文中,我们提出了一组最佳实践来评估表型定义的公平性。我们利用预测模型中常用的既定公平指标,并将其与常用的流行病学队列描述指标联系起来。我们描述了一项针对克罗恩病和2型糖尿病的实证研究,每个研究都有从两组患者亚组(性别和种族)中从文献中获取的多种表型定义。我们表明,根据不同的公平指标和亚组,不同的表型定义表现出较大和不同的性能。我们希望拟议的最佳实践可以帮助构建公平和包容的表型定义。
translated by 谷歌翻译
COVID-19的大流行造成了毁灭性的经济和社会破坏,使全球医疗机构的资源紧张。这导致全国范围内呼吁模型预测Covid-19患者的住院和严重疾病,以告知有限医疗资源的分配。我们回应针对儿科人群的其中一种。为了应对这一挑战,我们使用电子健康记录研究了针对儿科人群的两项预测任务:1)预测哪些儿童更有可能住院,而2)在住院儿童中,哪些孩子更有可能出现严重的症状。我们通过新颖的机器学习模型MEDML应对国家儿科Covid-19数据挑战。 MEDML根据超过600万个医学概念的医学知识和倾向得分提取了最预测的特征,并通过图神经网络(GNN)结合了异质医学特征之间的功能间关系。我们使用来自国家队列协作(N3C)数据集的数据评估了143,605名患者的MEDML,并在143,605名患者的住院预测任务中评估了严重性预测任务的11,465名患者。我们还报告了详细的小组级和个人级特征的重要性分析,以评估模型的解释性。与最佳的基线机器学习模型相比,MEDML的AUROC得分高达7%,AUPRC得分高达14%,并且自大流行以来的所有九个国家地理区域以及所有三个月的跨度都表现良好。我们的跨学科研究团队开发了一种将临床领域知识纳入新型机器学习模型的框架的方法,该框架比当前最新的数据驱动的功能选择方法更具预测性和可解释。
translated by 谷歌翻译
抗微生物抗性(AMR)是患者的风险和医疗保健系统的负担。但是,AMR测定通常需要几天。本研究为基于易于使用的临床和微生物预测因子,包括患者人口统计,医院住宿数据,诊断,临床特征以及微生物/抗微生物特征,以及仅使用微生物/抗微生物特征将这些模型与微生物/抗微生物特性进行基于幼稚抗体模型的模型的预测模型。在培养之前准确地预测阻力的能力可以向临床决策提供通知临床决策并缩短行动时间。这里采用的机器学习算法显示出改进的分类性能(接收器操作特性曲线0.88-0.89的区域)与使用飞利浦EICU研究所的6个生物和10个抗生素的接收器操作特征曲线0.86下的接收器下的面积为0.88-0.89)(ERI )数据库。该方法可以帮助指导抗菌治疗,目的是改善患者结果并减少不必要或无效抗生素的使用。
translated by 谷歌翻译
本文研究了医学领域的概念与患者表示的问题。我们将电子健康记录(EHRS)的患者历史作为ICD概念的时间序列,其中嵌入在一个无监督的设置中学习了一种基于变压器的神经网络模型。在6年内对百万患者历史的收集进行了模型培训。与几种基线方法相比,评估这种模型的预测力。与类似系统相比,对模拟-III数据的一系列实验显示了所呈现模型的优势。此外,我们分析了对概念关系的获得空间,并展示了医学领域的知识如何成功转移到患者嵌入形式的保险评分的实际任务。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
医学中的机器学习利用了财富的医疗保健数据来提取知识,促进临床决策,最终改善护理。然而,在缺乏人口统计分集的数据集上培训的ML模型可以在适用于不足的人群时产生次优绩效(例如少数民族,社会经济地位较低),因此延续了健康差异。在这项研究中,我们评估了四种型分类,以预测高氯血症 - 一种经常由ICU人口中的侵袭性流体给药的条件 - 并将其在种族,性别和保险亚组中进行比较。我们观察到,除了基于实验室的患者的模型性能之外,还要添加社会决定因素特征。 40个模型 - 亚组中的40分,亚组测试产生了显着不同的AUC分数,提示在将ML模型应用于社会决定簇子组时的差异。我们敦促未来的研究人员设计主动调整潜在偏见的模型,并包括他们研究中的子组报告。
translated by 谷歌翻译
医院住宿时间(LOS)是最重要的医疗保健度量之一,反映了医院的服务质量,有助于改善医院调度和管理。LOS预测有助于成本管理,因为留在医院的患者通常在资源受到严重限制的情况下这样做。在这项研究中,我们通过机器学习和统计方法审查了LOS预测的论文。我们的文献综述考虑了对卒中患者LOS预测的研究研究。一些受访的研究表明,作者达成了相应的结论。例如,患者的年龄被认为是一些研究中卒中患者LOS的重要预测因子,而其他研究则认为年龄不是一个重要因素。因此,在该领域需要额外的研究以进一步了解卒中患者LOS的预测因子。
translated by 谷歌翻译
败血症是一种威胁生命的患有器官功能障碍的疾病,是全球死亡和重症疾病的主要原因。急诊科分类过程中败血症的准确检测将允许尽早开始实验室分析,抗生素给药和其他败血症治疗方案。这项研究的目的是确定是否可以将EHR数据与最新的机器学习算法(Kate Sepsis)和临床自然语言处理一起提取和合成,以产生准确的脓毒症模型,并将Kate Sepsis与现有的败血症筛查方案进行比较爵士和QSOFA。使用来自16家参与医院的分类数据的患者遇到的患者遭遇开发了机器学习模型(Kate Sepsis)。凯特败血症,SIRS,标准筛查(具有感染源的SIRS)和QSOFA在三个设置中进行了测试。队列A是对单个站点1的医疗记录的回顾性分析。同类B是对位点1的前瞻性分析1.同伴C是对站点1的回顾性分析,并有15个地点。在所有队列中,凯特败血症的AUC为0.94-0.963,TPR为73-74.87%和3.76-7.17%FPR。标准筛选显示AUC为0.682-0.726,TPR为39.39-51.19%和2.9-6.02%FPR。 QSOFA协议的AUC为0.544-0.56,TPR为10.52-13.18%和1.22-1.68%FPR。对于严重的败血症,在所有队列中,凯特败血症的AUC为0.935-0.972,TPR为70-82.26%和4.64-8.62%FPR。对于败血性休克,在所有队列中,凯特败血症的AUC为0.96-0.981,TPR为85.71-89.66%和4.85-8.8%FPR。 SIRS,标准筛选和QSOFA表现出严重败血症和败血性休克检测的低AUC和TPR。凯特败血症在分类中提供的败血症检测性能比常用的筛查方案更好。
translated by 谷歌翻译
细菌感染负责全球高死亡率。感染潜在的抗菌素耐药性,多方面的患者的临床状况会阻碍正确选择抗生素治疗。随机临床试验提供了平均治疗效果估计值,但对于治疗选择的风险分层和优化,即个性化治疗效果(ITE)并不理想。在这里,我们利用了从美国南部学术诊所收集的大规模电子健康记录数据,模仿临床试验,即“目标试验”,并为诊断患有急性细菌的患者开发了死亡率预测和ITE估计的机器学习模型皮肤和皮肤结构感染(ABSSI)是由于金黄色葡萄球菌(MRSA)引起的。 ABSSI-MRSA是一个充满挑战的疾病,治疗选择减少 - 万古霉素是首选的选择,但它具有不可忽略的副作用。首先,我们使用倾向评分匹配来模仿试验并创建随机治疗(万古霉素与其他抗生素)数据集。接下来,我们使用此数据来训练各种机器学习方法(包括增强/Lasso Logistic回归,支持向量机和随机森林),并通过引导验证选择接收器特征(AUC)下的面积最佳模型。最后,我们使用这些模型来计算ITE并通过改变治疗的变化来避免死亡。排出外测试表明,SVM和RF是最准确的,AUC分别为81%和78%,但BLR/Lasso不远(76%)。通过使用BLR/Lasso计算反事实,万古霉素增加了死亡的风险,但显示出很大的变化(优势比1.2,95%范围0.4-3.8),对结果概率的贡献是适度的。取而代之的是,RF在ITE中表现出更大的变化,表明更复杂的治疗异质性。
translated by 谷歌翻译
Health systems rely on commercial prediction algorithms to identify and help patients with complex health needs. We show that a widely used algorithm, typical of this industry-wide approach and affecting millions of patients, exhibits significant racial bias: At a given risk score, Black patients are considerably sicker than White patients, as evidenced by signs of uncontrolled illnesses. Remedying this disparity would increase the percentage of Black patients receiving additional help from 17.7 to 46.5%. The bias arises because the algorithm predicts health care costs rather than illness, but unequal access to care means that we spend less money caring for Black patients than for White patients. Thus, despite health care cost appearing to be an effective proxy for health by some measures of predictive accuracy, large racial biases arise. We suggest that the choice of convenient, seemingly effective proxies for ground truth can be an important source of algorithmic bias in many contexts.
translated by 谷歌翻译
临床笔记是健康记录的重要组成部分。本文评估了如何使用自然语言处理(NLP)来确定肿瘤患者急性护理使用(ACU)的风险,一旦化疗开始。使用结构化健康数据(SHD)的风险预测现在是标准的,但是使用自由文本格式的预测很复杂。本文探讨了自由文本注释用于预测ACU而不是SHD的使用。将深度学习模型与手动设计的语言功能进行了比较。结果表明,SHD模型最少胜过NLP模型。具有SHD的L1型逻辑回归的C统计量为0.748(95%-CI:0.735,0.762),而具有语言功能的相同模型达到0.730(95%-CI:0.717,0.745)和基于变形金属的模型模型达到了0.702(95%-CI:0.688,0.717)。本文展示了如何在临床应用中使用语言模型,并强调了不同患者群体的风险偏见如何不同,即使仅使用自由文本数据。
translated by 谷歌翻译
Systemic Lupus红斑(SLE)是一种罕见的自身免疫疾病,其特征是令人无法预测的耀斑和缓解的速度,具有不同的表现形式。狼疮性肾炎,SLE用于器官损伤和死亡率的主要疾病表现之一,是卢布斯分类标准的关键组成部分。因此,准确地鉴定电子健康记录(EHRS)中的狼疮性肾炎将使大型队列观察研究和临床试验有益于患者人口的表征对于招聘,研究设计和分析至关重要。可以通过程序代码和结构化数据来认可狼疮肾炎,例如实验室测试。然而,记录狼疮肾炎的其他关键信息,例如来自肾脏活检和先前的医学史叙事的组织学报告,需要复杂的文本处理,以从病理报告和临床笔记中挖掘信息。在这项研究中,我们开发了使用EHR数据识别鉴定狼疮肾炎的血管肾炎,而不使用自然语言处理(NLP)。我们开发了四种算法:仅使用结构化数据(基线算法)和使用不同NLP模型的三种算法的规则的算法。这三种NLP模型基于正则化逻辑回归,并使用不同的特征集,包括积极提及概念独特标识符(Cue),耐备的外观数量,以及三个部件的混合物。基线算法和最佳执行的NLP算法在Vanderbilt University Center(VUMC)的数据集上验证了外部验证。我们最佳地执行来自结构化数据,正则表达式概念和映射的特征的NLP模型,与基线狼疮性肾炎算法相比,在NMEDW(0.41 VS 0.79)和VUMC(0.62 VS 0.96)数据集中有所改善。
translated by 谷歌翻译
近年来,临床语言处理引起了很多关注,导致了新的模型或疾病表型,死亡率预测和其他任务的方法。不幸的是,这些方法中的许多方法都经过不同的实验设置(例如数据源,培训和测试拆分,指标,评估标准等)的测试,从而使其难以比较方法并确定最新方法。为了解决这些问题并促进可重复性和比较,我们通过一组四个临床语言理解任务,标准培训,开发,验证和测试集介绍了临床语言理解评估(线索)基准,从模拟数据以及软件中得出的测试集工具包。我们希望这些数据能够在方法之间进行直接比较,提高可重复性,并减少为这些临床语言理解任务开发新型模型或方法的进入的障碍。
translated by 谷歌翻译
该手稿解决了预测出院后全因住院再入院或死亡的同时问题,并量化放电放置在防止这些不良事件中的影响。为此,我们开发了一个固有的可解释的多级贝叶斯建模框架,该框架灵感来自重新激活的深神经网络的分段线性。在生存模型中,我们明确调整了混淆,以量化局部平均治疗效果以进行放电的干预措施。从2008年和2011年开始,我们对5%的Medicare受益人样本进行了培训,然后在2012年的索赔中测试了该模型。该模型对30天全因素外的再选中(使用官方CMS方法定义)的分类精度进行了评估,该模型对XGBoost,Logistic回归(功能工程后)和对同一数据进行训练的贝叶斯深神经网络的执行方式相似。该模型对30天的分类任务进行了预测的30天分类任务,该任务是使用剩下的未来数据进行测试,该模型的AUROC约为0.76,AUPRC约为0.50(相对于测试数据中的总体阳性速率),AUPRC的AUPRC达到了约0.76,而AUPRC的AUPRC则达到了AUPRC,则获得了AUPRC。证明人们不需要为准确性而牺牲可解释性。此外,该模型的测试AUROC为0.78,分类为90天全因素外再入院或死亡。我们很容易地凝视着我们固有的可解释模型,总结了其主要发现。此外,我们演示了Black-box Perthoc解释器工具的形状如何生成不受拟合模型支持的解释 - 如果以面值为单位,则没有提供足够的上下文来使模型可操作。
translated by 谷歌翻译
越来越多的研究致力于将机器学习方法应用于电子健康记录(EHR)数据,以完成各种临床任务。这一不断增长的研究领域暴露了所有人EHR数据集可访问性的局限性,以及不同建模框架的可重复性。这些局限性的原因之一是缺乏标准化的预处理管道。模仿是一种以许多研究中使用的原始格式免费获得的EHR数据集。缺乏标准化的预处理步骤是对数据集更广泛采用的重大障碍。它还导致在下游任务中使用不同的队列,从而限制了在类似研究中比较结果的能力。对比研究还使用各种不同的性能指标,可以大大降低比较模型结果的能力。在这项工作中,我们提供了一条端到端完全可定制的管道,以提取,清洁和预处理数据;并预测和评估ICU和非ICU相关临床时间序列预测任务的模拟数据集(MIMIC-IV)的第四版。该工具可在https://github.com/healthylaife/mimic-imic-iv-data-pipeline上公开获得。
translated by 谷歌翻译