许多完善的异常检测方法使用样本到其本地附近的距离:所谓的“本地异常值”,例如LOF和DBSCAN。它们是他们在许多实际应用中的非结构化,基于功能的数据上的简单原则和强大性能的欢迎和强大的性能。但是,由于它们缺乏培训参数,他们无法学会适应特定的数据集。在本文中,我们首先统一本地异常方法,通过表明它们是图形神经网络中使用的更通用消息传递框架的特定情况。这使我们能够以神经网络的形式将可读性引入本地异常值方法,以获得更大的灵活性和表现:特别是,我们提出了新颖的基于图形神经网络的异常检测方法。 Lunar学会以可训练方式使用来自每个节点的最近邻居的信息来查找异常。我们表明,我们的方法比现有的本地异常值方法更好地表现出来,以及最先进的深线。我们还表明,我们的方法的性能更加强大,对本地邻域大小的不同设置更加强大。
translated by 谷歌翻译
我们如何检测异常:也就是说,与给定的一组高维数据(例如图像或传感器数据)显着不同的样品?这是众多应用程序的实际问题,也与使学习算法对意外输入更强大的目标有关。自动编码器是一种流行的方法,部分原因是它们的简单性和降低维度的能力。但是,异常评分函数并不适应正常样品范围内重建误差的自然变化,这阻碍了它们检测实际异常的能力。在本文中,我们从经验上证明了局部适应性对具有真实数据的实验中异常评分的重要性。然后,我们提出了新颖的自适应重建基于错误的评分方法,该方法根据潜在空间的重建误差的局部行为来适应其评分。我们表明,这改善了各种基准数据集中相关基线的异常检测性能。
translated by 谷歌翻译
与其他图表相比,图形级异常检测(GAD)描述了检测其结构和/或其节点特征的图表的问题。GAD中的一个挑战是制定图表表示,该图表示能够检测本地和全局 - 异常图,即它们的细粒度(节点级)或整体(图级)属性异常的图形,分别。为了解决这一挑战,我们介绍了一种新的深度异常检测方法,用于通过图表和节点表示的联合随机蒸馏学习丰富的全球和局部正常模式信息。通过训练一个GNN来实现随机初始化网络权重的另一GNN来实现随机蒸馏。来自各种域的16个真实图形数据集的广泛实验表明,我们的模型显着优于七种最先进的模型。代码和数据集可以在https://git.io/llocalkd中获得。
translated by 谷歌翻译
用木材制成的木材和森林产品,例如家具,是宝贵的商品,就像许多高估的自然资源的全球贸易一样,面临腐败,欺诈和非法收获的挑战。木材和森林产品部门的这些灰色和黑色市场活动不仅限于收获木材的国家,而是在整个全球供应链中扩展,并与非法金融流有关,例如基于贸易的洗钱,记录欺诈,种类标签和其他非法活动。在没有地面真理的情况下,使用贸易数据找到此类欺诈活动的任务可以作为无监督的异常检测问题进行建模。但是,现有的方法在其对大规模贸易数据的适用性方面存在某些缺点。贸易数据是异质的,具有表格格式的分类和数值属性。总体挑战在于数据的复杂性,数量和速度,具有大量实体和缺乏地面真相标签。为了减轻这些方法,我们提出了一种新型的无监督异常检测 - 基于对比度学习的异质异常检测(CHAD),通常适用于大规模的异质表格数据。我们证明,我们的模型CHAD对公共基准数据集的多个可比较基线表现出色,并且在贸易数据的情况下优于它们。更重要的是,我们证明我们的方法减少了假设和努力所需的高参数调整,这在无监督的培训范式中是一个关键的挑战。具体而言,我们的总体目标涉及使用提单贸易记录数据账单来检测可疑的木材运输和模式。在运输记录中检测异常交易可以使政府机构和供应链成分进一步调查。
translated by 谷歌翻译
本文研究了图形神经网络(GNNS)应用程序,以进行自我监督的网络入侵和异常检测。 GNN是一种基于图的数据的深度学习方法,它将图形结构纳入学习以概括图表和输出嵌入。由于网络流量自然基于图,因此GNN非常适合分析和学习网络行为。基于GNN的网络入侵检测系统(NIDSS)的最新实现很大程度上依赖于标记的网络流量,这不仅可以限制输入流量的数量和结构,还可以限制NIDSS的潜力来适应看不见的攻击。为了克服这些限制,我们提出了异常-E,这是GNN的入侵和异常检测方法,该方法在自我监督过程中利用边缘特征和图形拓扑结构。据我们所知,这种方法是第一种成功且实用的方法来进行网络入侵检测,该方法利用网络流动在自我监督,边缘利用GNN中。两个现代基准NIDS数据集的实验结果不仅清楚地显示了使用Anomal-E嵌入而不是原始功能的改进,而且还显示了对野生网络流量检测的潜在异常-E具有的潜在异常功能。
translated by 谷歌翻译
Anomaly detection is defined as discovering patterns that do not conform to the expected behavior. Previously, anomaly detection was mostly conducted using traditional shallow learning techniques, but with little improvement. As the emergence of graph neural networks (GNN), graph anomaly detection has been greatly developed. However, recent studies have shown that GNN-based methods encounter challenge, in that no graph anomaly detection algorithm can perform generalization on most datasets. To bridge the tap, we propose a multi-view fusion approach for graph anomaly detection (Mul-GAD). The view-level fusion captures the extent of significance between different views, while the feature-level fusion makes full use of complementary information. We theoretically and experimentally elaborate the effectiveness of the fusion strategies. For a more comprehensive conclusion, we further investigate the effect of the objective function and the number of fused views on detection performance. Exploiting these findings, our Mul-GAD is proposed equipped with fusion strategies and the well-performed objective function. Compared with other state-of-the-art detection methods, we achieve a better detection performance and generalization in most scenarios via a series of experiments conducted on Pubmed, Amazon Computer, Amazon Photo, Weibo and Books. Our code is available at https://github.com/liuyishoua/Mul-Graph-Fusion.
translated by 谷歌翻译
A large number of studies on Graph Outlier Detection (GOD) have emerged in recent years due to its wide applications, in which Unsupervised Node Outlier Detection (UNOD) on attributed networks is an important area. UNOD focuses on detecting two kinds of typical outliers in graphs: the structural outlier and the contextual outlier. Most existing works conduct experiments based on datasets with injected outliers. However, we find that the most widely-used outlier injection approach has a serious data leakage issue. By only utilizing such data leakage, a simple approach can achieve state-of-the-art performance in detecting outliers. In addition, we observe that most existing algorithms have a performance drop with varied injection settings. The other major issue is on balanced detection performance between the two types of outliers, which has not been considered by existing studies. In this paper, we analyze the cause of the data leakage issue in depth since the injection approach is a building block to advance UNOD. Moreover, we devise a novel variance-based model to detect structural outliers, which outperforms existing algorithms significantly at different injection settings. On top of this, we propose a new framework, Variance-based Graph Outlier Detection (VGOD), which combines our variance-based model and attribute reconstruction model to detect outliers in a balanced way. Finally, we conduct extensive experiments to demonstrate the effectiveness and efficiency of VGOD. The results on 5 real-world datasets validate that VGOD achieves not only the best performance in detecting outliers but also a balanced detection performance between structural and contextual outliers. Our code is available at https://github.com/goldenNormal/vgod-github.
translated by 谷歌翻译
AutoEncoders在异常检测中具有高能物理学中的有用应用,特别是对于喷气机 - 在碰撞中产生的颗粒的准直淋浴,例如Cern大型强子撞机的碰撞。我们探讨了基于图形的AutoEncoders,它们在其“粒子云”表示中的喷射器上运行,并且可以在喷气机内的粒子中利用相互依存的依赖性,用于这种任务。另外,我们通过图形神经网络对能量移动器的距离开发可差的近似,这随后可以用作自动化器的重建损耗函数。
translated by 谷歌翻译
Cross-domain graph anomaly detection (CD-GAD) describes the problem of detecting anomalous nodes in an unlabelled target graph using auxiliary, related source graphs with labelled anomalous and normal nodes. Although it presents a promising approach to address the notoriously high false positive issue in anomaly detection, little work has been done in this line of research. There are numerous domain adaptation methods in the literature, but it is difficult to adapt them for GAD due to the unknown distributions of the anomalies and the complex node relations embedded in graph data. To this end, we introduce a novel domain adaptation approach, namely Anomaly-aware Contrastive alignmenT (ACT), for GAD. ACT is designed to jointly optimise: (i) unsupervised contrastive learning of normal representations of nodes in the target graph, and (ii) anomaly-aware one-class alignment that aligns these contrastive node representations and the representations of labelled normal nodes in the source graph, while enforcing significant deviation of the representations of the normal nodes from the labelled anomalous nodes in the source graph. In doing so, ACT effectively transfers anomaly-informed knowledge from the source graph to learn the complex node relations of the normal class for GAD on the target graph without any specification of the anomaly distributions. Extensive experiments on eight CD-GAD settings demonstrate that our approach ACT achieves substantially improved detection performance over 10 state-of-the-art GAD methods. Code is available at https://github.com/QZ-WANG/ACT.
translated by 谷歌翻译
孤立森林(Iforest)近年来已经成为最受欢迎的异常检测器。它迭代地在树结构中执行轴平行的数据空间分区,以将偏差的数据对象与其他数据隔离,并且定义为异常得分的对象的隔离难度。 iForest在流行的数据集基准中显示出有效的性能,但其基于轴平行的线性数据分区无效地处理高维/非线性数据空间中的硬异常,甚至更糟糕的是,它导致了臭名昭著的算法偏见。为人工制品区域分配了出乎意料的较大的异常得分。有几个扩展的Iforest,但它们仍然专注于线性数据分区,无法有效地隔离这些硬异常。本文介绍了iforest,深层隔离森林的新型扩展。我们的方法提供了一种综合的隔离方法,可以在任何大小的子空间上任意将数据任意划分数据,从而有效地避免了线性分区中的算法偏置。此外,它仅需要随机初始化的神经网络(即,我们的方法中不需要优化)来确保分区的自由。这样一来,可以完全利用基于网络的随机表示和基于随机分区的隔离的所需随机性和多样性,以显着增强基于隔离集合的异常检测。此外,我们的方法还提供了数据型 - 敏捷的异常检测解决方案。通过简单地插入功能映射中的随机初始化的神经网络来检测不同类型数据中的异常。大量现实数据集的广泛经验结果表明,我们的模型对基于最新的隔离和基于非异常的异常检测模型有了显着改善。
translated by 谷歌翻译
图形离群值检测是一项具有许多应用程序的新兴但至关重要的机器学习任务。尽管近年来算法扩散,但缺乏标准和统一的绩效评估设置限制了它们在现实世界应用中的进步和使用。为了利用差距,我们(据我们所知)(据我们所知)第一个全面的无监督节点离群值检测基准为unod,并带有以下亮点:(1)评估骨架从经典矩阵分解到最新图形神经的骨架的14个方法网络; (2)在现实世界数据集上使用不同类型的注射异常值和自然异常值对方法性能进行基准测试; (3)通过在不同尺度的合成图上使用运行时和GPU存储器使用算法的效率和可扩展性。基于广泛的实验结果的分析,我们讨论了当前渠道方法的利弊,并指出了多个关键和有希望的未来研究方向。
translated by 谷歌翻译
Recently, graph anomaly detection has attracted increasing attention in data mining and machine learning communities. Apart from existing attribute anomalies, graph anomaly detection also captures suspicious topological-abnormal nodes that differ from the major counterparts. Although massive graph-based detection approaches have been proposed, most of them focus on node-level comparison while pay insufficient attention on the surrounding topology structures. Nodes with more dissimilar neighborhood substructures have more suspicious to be abnormal. To enhance the local substructure detection ability, we propose a novel Graph Anomaly Detection framework via Multi-scale Substructure Learning (GADMSL for abbreviation). Unlike previous algorithms, we manage to capture anomalous substructures where the inner similarities are relatively low in dense-connected regions. Specifically, we adopt a region proposal module to find high-density substructures in the network as suspicious regions. Their inner-node embedding similarities indicate the anomaly degree of the detected substructures. Generally, a lower degree of embedding similarities means a higher probability that the substructure contains topology anomalies. To distill better embeddings of node attributes, we further introduce a graph contrastive learning scheme, which observes attribute anomalies in the meantime. In this way, GADMSL can detect both topology and attribute anomalies. Ultimately, extensive experiments on benchmark datasets show that GADMSL greatly improves detection performance (up to 7.30% AUC and 17.46% AUPRC gains) compared to state-of-the-art attributed networks anomaly detection algorithms.
translated by 谷歌翻译
半监督异常检测旨在使用在正常数据上培训的模型来检测来自正常样本的异常。随着近期深度学习的进步,研究人员设计了高效的深度异常检测方法。现有作品通常使用神经网络将数据映射到更具内容性的表示中,然后应用异常检测算法。在本文中,我们提出了一种方法,DASVDD,它共同学习AutoEncoder的参数,同时最小化其潜在表示上的封闭超球的音量。我们提出了一个异常的分数,它是自动化器的重建误差和距离潜在表示中封闭边距中心的距离的组合。尽量减少这种异常的分数辅助我们在培训期间学习正常课程的潜在分布。包括异常分数中的重建错误确保DESVDD不受常见的极度崩溃问题,因为DESVDD模型不会收敛到映射到潜在表示中的恒定点的常量点。几个基准数据集上的实验评估表明,该方法优于常用的最先进的异常检测算法,同时在不同的异常类中保持鲁棒性能。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
We combine the metrics of distance and isolation to develop the \textit{Analytic Isolation and Distance-based Anomaly (AIDA) detection algorithm}. AIDA is the first distance-based method that does not rely on the concept of nearest-neighbours, making it a parameter-free model. Differently from the prevailing literature, in which the isolation metric is always computed via simulations, we show that AIDA admits an analytical expression for the outlier score, providing new insights into the isolation metric. Additionally, we present an anomaly explanation method based on AIDA, the \textit{Tempered Isolation-based eXplanation (TIX)} algorithm, which finds the most relevant outlier features even in data sets with hundreds of dimensions. We test both algorithms on synthetic and empirical data: we show that AIDA is competitive when compared to other state-of-the-art methods, and it is superior in finding outliers hidden in multidimensional feature subspaces. Finally, we illustrate how the TIX algorithm is able to find outliers in multidimensional feature subspaces, and use these explanations to analyze common benchmarks used in anomaly detection.
translated by 谷歌翻译
异常和异常值检测是机器学习中的长期问题。在某些情况下,异常检测容易,例如当从诸如高斯的良好特征的分布中抽出数据时。但是,当数据占据高维空间时,异常检测变得更加困难。我们呈现蛤蜊(聚类学习近似歧管),是任何度量空间中的歧管映射技术。 CLAM以快速分层聚类技术开始,然后根据使用多个几何和拓扑功能所选择的重叠群集,从群集树中引导图表。使用这些图形,我们实现了Chaoda(群集分层异常和异常值检测算法),探索了图形的各种属性及其组成集群以查找异常值。 Chaoda采用了一种基于培训数据集的转移学习形式,并将这些知识应用于不同基数,维度和域的单独测试集。在24个公开可用的数据集上,我们将Chaoda(按衡量ROC AUC)与各种最先进的无监督异常检测算法进行比较。六个数据集用于培训。 Chaoda优于16个剩余的18个数据集的其他方法。 CLAM和Chaoda规模大,高维“大数据”异常检测问题,并贯穿数据集和距离函数。克拉姆和Chaoda的源代码在github上自由地提供https://github.com/uri-abd/clam。
translated by 谷歌翻译
异常检测旨在识别数据点,这些数据点显示了未标记数据集中大多数数据的系统偏差。一个普遍的假设是,可以使用干净的培训数据(没有异常),这在实践中通常会违反。我们提出了一种在存在与广泛模型兼容的未标记异常的情况下训练异常检测器的策略。这个想法是在更新模型参数时将二进制标签共同推断为每个基准(正常与异常)。受到异常暴露的启发(Hendrycks等人,2018年),该暴露考虑合成创建,标记为异常,我们因此使用了两个共享参数的损失的组合:一个用于正常参数,一个用于异常数据。然后,我们对参数和最可能(潜在)标签进行块坐标更新。我们在三个图像数据集,30个表格数据集和视频异常检测基准上使用几个主链模型进行了实验,对基线显示了一致且显着的改进。
translated by 谷歌翻译
由于其在许多有影响力的领域中的广泛应用,归因网络上的图形异常检测已成为普遍的研究主题。在现实情况下,属性网络中的节点和边缘通常显示出不同的异质性,即不同类型的节点的属性显示出大量的多样性,不同类型的关系表示多种含义。在这些网络中,异常在异质性的各个角度上的表现通常与大多数不同。但是,现有的图异常检测方法不能利用归因网络中的异质性,这与异常检测高度相关。鉴于这个问题,我们提出了前方的提议:基于编码器解码器框架的异质性无监督图异常检测方法。具体而言,对于编码器,我们设计了三个关注级别,即属性级别,节点类型级别和边缘级别的关注,以捕获网络结构的异质性,节点属性和单个节点的信息。在解码器中,我们利用结构,属性和节点类型重建项来获得每个节点的异常得分。广泛的实验表明,与无监督环境中的艺术品相比,在几个现实世界中的异质信息网络上,前方的优势。进一步的实验验证了我们三重注意力,模型骨干和解码器的有效性和鲁棒性。
translated by 谷歌翻译
异常(或异常值)在现实世界的经验观察中普遍存在,并且潜在地掩盖了重要的基础结构。准确识别异常样品对于下游数据分析任务的成功至关重要。为了自动识别异常,我们提出了概率鲁棒性自动编码器(PRAE)。 PRAE的目的是同时删除异常值并确定嵌入式样品的低维表示。我们首先提出了强大的自动编码器(RAE)目标,作为将数据拆分为嵌入式和离群值的最小化问题。我们的目标旨在排除离群值,同时包括可以使用自动编码器(AE)有效重建的样本(Inliers)的子集。 RAE最小化自动编码器的重建误差,同时合并尽可能多的样品。可以通过减去$ \ ell_0 $ norm对重建项中所选样本的数量进行$ \ ell_0 $ norm来制定这一点。不幸的是,这导致了一个棘手的组合问题。因此,我们提出了两种RAE的概率放松,它们是可区分的,可以减轻组合搜索的需求。我们证明,解决PRAE问题的解决方案等效于RAE的解决方案。我们使用合成数据来表明PRAE可以准确地删除广泛污染水平的异常值。最后,我们证明,使用PRAE进行异常检测会导致各种基准数据集中的最新结果。
translated by 谷歌翻译