我们研究基于Krylov子空间的迭代方法,用于在任何Schatten $ p $ Norm中的低级别近似值。在这里,通过矩阵向量产品访问矩阵$ a $ $如此$ \ | a(i -zz^\ top)\ | _ {s_p} \ leq(1+ \ epsilon)\ min_ {u^\ top u = i_k} } $,其中$ \ | m \ | _ {s_p} $表示$ m $的单数值的$ \ ell_p $ norm。对于$ p = 2 $(frobenius norm)和$ p = \ infty $(频谱规范)的特殊情况,musco and Musco(Neurips 2015)获得了基于Krylov方法的算法,该方法使用$ \ tilde {o}(k)(k /\ sqrt {\ epsilon})$ matrix-vector产品,改进na \“ ive $ \ tilde {o}(k/\ epsilon)$依赖性,可以通过功率方法获得,其中$ \ tilde {o} $抑制均可抑制poly $(\ log(dk/\ epsilon))$。我们的主要结果是仅使用$ \ tilde {o}(kp^{1/6}/\ epsilon^{1/3} {1/3})$ matrix $ matrix的算法 - 矢量产品,并为所有$ p \ geq 1 $。为$ p = 2 $工作,我们的限制改进了先前的$ \ tilde {o}(k/\ epsilon^{1/2})$绑定到$ \ tilde {o}(k/\ epsilon^{1/3})$。由于schatten- $ p $和schatten-$ \ infty $ norms在$(1+ \ epsilon)$ pers $ p时相同\ geq(\ log d)/\ epsilon $,我们的界限恢复了Musco和Musco的结果,以$ p = \ infty $。此外,我们证明了矩阵矢量查询$ \ omega的下限(1/\ epsilon^ {1/3})$对于任何固定常数$ p \ geq 1 $,表明令人惊讶的$ \ tilde {\ theta}(1/\ epsilon^{ 1/3})$是常数〜$ k $的最佳复杂性。为了获得我们的结果,我们介绍了几种新技术,包括同时对多个Krylov子空间进行优化,以及针对分区操作员的不平等现象。我们在[1,2] $中以$ p \的限制使用了Araki-lieb-thirring Trace不平等,而对于$ p> 2 $,我们呼吁对安装分区操作员的规范压缩不平等。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
Tensor完成是矩阵完成的自然高阶泛化,其中目标是从其条目的稀疏观察中恢复低级张量。现有算法在没有可证明的担保的情况下是启发式,基于解决运行不切实际的大型半纤维程序,或者需要强大的假设,例如需要因素几乎正交。在本文中,我们介绍了交替最小化的新变型,其又通过了解如何对矩阵设置中的交替最小化的收敛性的进展措施来调整到张量设置的启发。我们展示了强大的可证明的保证,包括表明我们的算法即使当因素高度相关时,我们的算法也会在真正的张量线上会聚,并且可以在几乎线性的时间内实现。此外,我们的算法也非常实用,我们表明我们可以完成具有千维尺寸的三阶张量,从观察其条目的微小一部分。相比之下,有些令人惊讶的是,我们表明,如果没有我们的新扭曲,则表明交替最小化的标准版本可以在实践中以急剧速度收敛。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
我们研究了用$ q $ modes $ a \ in \ mathbb {r}^{n \ times \ ldots \ times n} $的近似给定张量的问题。图$ g =(v,e)$,其中$ | v | = q $,以及张张量的集合$ \ {u_v \ mid v \ in v \} $,以$ g $指定的方式收缩以获取张量$ t $。对于$ u_v $的每种模式,对应于$ v $的边缘事件,尺寸为$ k $,我们希望找到$ u_v $,以便最小化$ t $和$ a $之间的frobenius norm距离。这概括了许多众所周知的张量网络分解,例如张量列,张量环,塔克和PEPS分解。我们大约是二进制树网络$ t'$带有$ o(q)$核的大约$ a $,因此该网络的每个边缘上的尺寸最多是$ \ widetilde {o}(k^{o(dt) } \ cdot q/\ varepsilon)$,其中$ d $是$ g $的最大度,$ t $是其树宽,因此$ \ | a -t'-t'\ | _f^2 \ leq(1 + \ Varepsilon)\ | a -t \ | _f^2 $。我们算法的运行时间为$ o(q \ cdot \ text {nnz}(a)) + n \ cdot \ text {poly}(k^{dt} q/\ varepsilon)$,其中$ \ text {nnz }(a)$是$ a $的非零条目的数量。我们的算法基于一种可能具有独立感兴趣的张量分解的新维度降低技术。我们还开发了固定参数可处理的$(1 + \ varepsilon)$ - 用于张量火车和塔克分解的近似算法,改善了歌曲的运行时间,Woodruff和Zhong(Soda,2019),并避免使用通用多项式系统求解器。我们表明,我们的算法对$ 1/\ varepsilon $具有几乎最佳的依赖性,假设没有$ O(1)$ - 近似算法的$ 2 \至4 $ norm,并且运行时间比蛮力更好。最后,我们通过可靠的损失函数和固定参数可拖动CP分解给出了塔克分解的其他结果。
translated by 谷歌翻译
神经网络模型的最新成功揭示了一种令人惊讶的统计现象:完全拟合噪声数据的统计模型可以很好地推广到看不见的测试数据。了解$ \ textit {良性过拟合} $的这种现象吸引了强烈的理论和经验研究。在本文中,我们考虑插值两层线性神经网络在平方损失上梯度流训练,当协变量满足亚高斯和抗浓度的特性时,在平方损耗上训练,并在多余的风险上获得界限,并且噪声是独立和次级高斯的。。通过利用最新的结果来表征该估计器的隐性偏见,我们的边界强调了初始化质量的作用以及数据协方差矩阵在实现低过量风险中的特性。
translated by 谷歌翻译
我们给出了\ emph {list-codobable协方差估计}的第一个多项式时间算法。对于任何$ \ alpha> 0 $,我们的算法获取输入样本$ y \ subseteq \ subseteq \ mathbb {r}^d $ size $ n \ geq d^{\ mathsf {poly}(1/\ alpha)} $获得通过对抗损坏I.I.D的$(1- \ alpha)n $点。从高斯分布中的样本$ x $ size $ n $,其未知平均值$ \ mu _*$和协方差$ \ sigma _*$。在$ n^{\ mathsf {poly}(1/\ alpha)} $ time中,它输出$ k = k(\ alpha)=(1/\ alpha)^{\ mathsf {poly}的常数大小列表(1/\ alpha)} $候选参数,具有高概率,包含$(\ hat {\ mu},\ hat {\ sigma})$,使得总变化距离$ tv(\ Mathcal {n}(n})(n}(n})( \ mu _*,\ sigma _*),\ Mathcal {n}(\ hat {\ mu},\ hat {\ sigma}))<1-o _ {\ alpha}(1)$。这是距离的统计上最强的概念,意味着具有独立尺寸误差的参数的乘法光谱和相对Frobenius距离近似。我们的算法更普遍地适用于$(1- \ alpha)$ - 任何具有低度平方总和证书的分布$ d $的损坏,这是两个自然分析属性的:1)一维边际和抗浓度2)2度多项式的超收缩率。在我们工作之前,估计可定性设置的协方差的唯一已知结果是针对Karmarkar,Klivans和Kothari(2019),Raghavendra和Yau(2019和2019和2019和2019和2019年)的特殊情况。 2020年)和巴克西(Bakshi)和科塔里(Kothari)(2020年)。这些结果需要超级物理时间,以在基础维度中获得任何子构误差。我们的结果意味着第一个多项式\ emph {extcect}算法,用于列表可解码的线性回归和子空间恢复,尤其允许获得$ 2^{ - \ Mathsf { - \ Mathsf {poly}(d)} $多项式时间错误。我们的结果还意味着改进了用于聚类非球体混合物的算法。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
求解线性系统的迭代方法的收敛速率$ \ mathbf {a} x = b $通常取决于矩阵$ \ mathbf {a} $的条件号。预处理是通过以计算廉价的方式减少该条件号来加速这些方法的常用方式。在本文中,我们通过左或右对角线重构重新审视如何最好地提高$ \ mathbf {a}条件号的数十年。我们在几个方向上取得了这个问题。首先,我们为缩放$ \ mathbf {a} $的经典启发式提供了新的界限(a.k.a.jacobi预处理)。我们证明了这种方法将$ \ MATHBF {a} $的条件号减少到最佳可能缩放的二次因素中。其次,我们为结构化混合包装和覆盖了Semidefinite程序(MPC SDP)提供了一个求解器,它计算$ \ mathbf {a} $ in $ \ widetilde {o}(\ text {nnz}(\ mathbf {a})\ cdot \ text {poly}(\ kappa ^ \ star))$ time;这与在缩放到$ \ widetilde {o}(\ text {poly}(\ kappa ^ \ star))$ factors之后求解线性系统的成本匹配。第三,我们证明了足够一般的宽度无关的MPC SDP求解器将暗示我们考虑的缩放问题的近乎最佳的运行时间,以及与平均调理措施有关的自然变体。最后,我们突出了我们的预处理技术与半随机噪声模型的连接,以及在几种统计回归模型中降低风险的应用。
translated by 谷歌翻译
数据驱动的算法可以通过从输入的训练样本中学习,可以使其内部结构或参数适应来自未知应用程序特定分布的输入。最近的一些作品将这种方法应用于数值线性代数中的问题,获得了绩效的显着经验增长。然而,尚无理论上的成功解释。在这项工作中,我们证明了这些算法的概括范围,在Gupta和Roughgarden提出的数据驱动算法选择的PAC学习框架内(Sicomp 2017)。我们的主要结果与Indyk等人的基于学习的低级近似算法的脂肪破碎维度紧密匹配(Neurips 2019)。我们的技术是一般的,并为数值线性代数中的许多其他最近提出的数据驱动算法提供了概括,涵盖了基于草图的基于草图的方法和基于多机的方法。这大大扩展了可用的PAC学习分析的数据驱动算法类别。
translated by 谷歌翻译
我们研究了在存在$ \ epsilon $ - 对抗异常值的高维稀疏平均值估计的问题。先前的工作为此任务获得了该任务的样本和计算有效算法,用于辅助性Subgaussian分布。在这项工作中,我们开发了第一个有效的算法,用于强大的稀疏平均值估计,而没有对协方差的先验知识。对于$ \ Mathbb r^d $上的分布,带有“认证有限”的$ t $ tum-矩和足够轻的尾巴,我们的算法达到了$ o(\ epsilon^{1-1/t})$带有样品复杂性$的错误(\ epsilon^{1-1/t}) m =(k \ log(d))^{o(t)}/\ epsilon^{2-2/t} $。对于高斯分布的特殊情况,我们的算法达到了$ \ tilde o(\ epsilon)$的接近最佳错误,带有样品复杂性$ m = o(k^4 \ mathrm {polylog}(d)(d))/\ epsilon^^ 2 $。我们的算法遵循基于方形的总和,对算法方法的证明。我们通过统计查询和低度多项式测试的下限来补充上限,提供了证据,表明我们算法实现的样本时间 - 错误权衡在质量上是最好的。
translated by 谷歌翻译
素描和项目是一个框架,它统一了许多已知的迭代方法来求解线性系统及其变体,并进一步扩展了非线性优化问题。它包括流行的方法,例如随机kaczmarz,坐标下降,凸优化的牛顿方法的变体等。在本文中,我们通过新的紧密频谱边界为预期的草图投影矩阵获得了素描和项目的收敛速率的敏锐保证。我们的估计值揭示了素描和项目的收敛率与另一个众所周知但看似无关的算法家族的近似误差之间的联系,这些算法使用草图加速了流行的矩阵因子化,例如QR和SVD。这种连接使我们更接近准确量化草图和项目求解器的性能如何取决于其草图大小。我们的分析不仅涵盖了高斯和次高斯的素描矩阵,还涵盖了一个有效的稀疏素描方法,称为较少的嵌入方法。我们的实验备份了理论,并证明即使极稀疏的草图在实践中也显示出相同的收敛属性。
translated by 谷歌翻译
通常希望通过将其投影到低维子空间来降低大数据集的维度。矩阵草图已成为一种非常有效地执行这种维度降低的强大技术。尽管有关于草图最差的表现的广泛文献,但现有的保证通常与实践中观察到的差异截然不同。我们利用随机矩阵的光谱分析中的最新发展来开发新技术,这些技术为通过素描获得的随机投影矩阵的期望值提供了准确的表达。这些表达式可以用来表征各种常见的机器学习任务中尺寸降低的性能,从低级别近似到迭代随机优化。我们的结果适用于几种流行的草图方法,包括高斯和拉德马赫草图,它们可以根据数据的光谱特性对这些方法进行精确的分析。经验结果表明,我们得出的表达式反映了这些草图方法的实际性能,直到低阶效应甚至不变因素。
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
我们考虑了在高维度中平均分离的高斯聚类混合物的问题。我们是从$ k $身份协方差高斯的混合物提供的样本,使任何两对手段之间的最小成对距离至少为$ \ delta $,对于某些参数$ \ delta> 0 $,目标是恢复这些样本的地面真相聚类。它是分离$ \ delta = \ theta(\ sqrt {\ log k})$既有必要且足以理解恢复良好的聚类。但是,实现这种担保的估计值效率低下。我们提供了在多项式时间内运行的第一算法,几乎符合此保证。更确切地说,我们给出了一种算法,它需要多项式许多样本和时间,并且可以成功恢复良好的聚类,只要分离为$ \ delta = \ oomega(\ log ^ {1/2 + c} k)$ ,任何$ c> 0 $。以前,当分离以k $的分离和可以容忍$ \ textsf {poly}(\ log k)$分离所需的quasi arynomial时间时,才知道该问题的多项式时间算法。我们还将我们的结果扩展到分布的分布式的混合物,该分布在额外的温和假设下满足Poincar \ {e}不等式的分布。我们认为我们相信的主要技术工具是一种新颖的方式,可以隐含地代表和估计分配的​​高度时刻,这使我们能够明确地提取关于高度时刻的重要信息而没有明确地缩小全瞬间张量。
translated by 谷歌翻译
在数值线性代数社区中,建议要获得诸如等级计算等各种问题的几乎最佳边界,找到最大线性独立的列(基础),回归或低秩近似,自然方式是解决尼尔森和尼文森的主要开放问题(Focs,2013)。该问题关于现有的忽略子空间嵌入的草图维度的对数因子,实现了恒因子近似的嵌入。我们展示了如何使用精细的草图技术绕过这个问题,并获得这些问题的最佳或几乎最佳的范围。我们使用的关键技术是基于不确定原理和提取器的Indyk的明确映射,在首次应用已知的漏窃子空间嵌入后,允许我们快速展开载体的质量,以便采样现在有效。由此,我们避免了在使用矩阵Chernoff不平等的界限中是标准的草图维度的对数因子。对于排名计算的基本问题和找到基础,我们的算法改善了张,郭和刘(Jacm,2013),并且在恒因因子和多个(日志日志(n)) - 因子中是最佳的。此外,对于恒定因子回归和低秩近似,我们给出了当前矩阵乘法指数的第一个最佳算法。
translated by 谷歌翻译
我们创建经典的(非量词)动态数据结构,为推荐系统和最小二乘回归的查询提供了与量子类似物相当的查询。近年来,这种算法的去量化引起了人们的关注。我们为这些问题获得了更清晰的界限。更重要的是,我们通过争辩说,这些问题的先前量子启发算法正在做杠杆或脊杠杆得分取样,以实现这些改进。这些是随机数值线性代数中强大而标准的技术。有了这种识别,我们能够在数值线性代数中采用大量工作来获得这些问题的算法,这些算法比现有方法更简单或更快(或两者兼而有之)。我们的实验表明,所提出的数据结构在现实世界数据集上也很好地工作。
translated by 谷歌翻译
Autoencoders are a popular model in many branches of machine learning and lossy data compression. However, their fundamental limits, the performance of gradient methods and the features learnt during optimization remain poorly understood, even in the two-layer setting. In fact, earlier work has considered either linear autoencoders or specific training regimes (leading to vanishing or diverging compression rates). Our paper addresses this gap by focusing on non-linear two-layer autoencoders trained in the challenging proportional regime in which the input dimension scales linearly with the size of the representation. Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods; their structure is also unveiled, thus leading to a concise description of the features obtained via training. For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders. Finally, while the results are proved for Gaussian data, numerical simulations on standard datasets display the universality of the theoretical predictions.
translated by 谷歌翻译
矩阵正常模型,高斯矩阵变化分布的系列,其协方差矩阵是两个较低尺寸因子的Kronecker乘积,经常用于模拟矩阵变化数据。张量正常模型将该家庭推广到三个或更多因素的Kronecker产品。我们研究了矩阵和张量模型中协方差矩阵的Kronecker因子的估计。我们向几个自然度量中的最大似然估计器(MLE)实现的误差显示了非因素界限。与现有范围相比,我们的结果不依赖于条件良好或稀疏的因素。对于矩阵正常模型,我们所有的所有界限都是最佳的对数因子最佳,对于张量正常模型,我们对最大因数和整体协方差矩阵的绑定是最佳的,所以提供足够的样品以获得足够的样品以获得足够的样品常量Frobenius错误。在与我们的样本复杂性范围相同的制度中,我们表明迭代程序计算称为触发器算法称为触发器算法的MLE的线性地收敛,具有高概率。我们的主要工具是Fisher信息度量诱导的正面矩阵的几何中的测地强凸性。这种强大的凸起由某些随机量子通道的扩展来决定。我们还提供了数值证据,使得将触发器算法与简单的收缩估计器组合可以提高缺乏采样制度的性能。
translated by 谷歌翻译