随着LIDAR传感器无处不在,对LiDAR数据压缩算法的需求增加了。现代激光痛每小时会产生千兆字节的扫描数据,并且经常用于有限的计算,带宽和存储资源的应用中。我们为激光雷达范围和属性扫描序列提供了一种快速,无损的压缩算法,包括多回报范围,信号,反射率和环境红外。我们的算法(称为“ Jiffy”)通过利用时空冗余性和稀疏性来实现实质性压缩。速度是通过最大程度地利用单个指令(SIMD)指令来实现的。在自动驾驶,基础架构监控,无人机检查和手持式映射基准测试中,吉菲算法始终以单个核心的速度超过65m/sec的速度运行,始终胜过竞争的无损编解码器。在典型的自动驾驶用例中,单线程JIFFY以每秒500多次扫描以6厘米精确范围的扫描达到6倍压缩。为了确保可重复性并启用采用,该软件可以作为开源库免费提供。
translated by 谷歌翻译
有效的点云压缩对于虚拟和混合现实,自动驾驶和文化遗产等应用至关重要。在本文中,我们为动态点云几何压缩提出了一个基于深度学习的框架间编码方案。我们提出了一种有损的几何压缩方案,该方案通过使用新的预测网络,使用先前的框架来预测当前帧的潜在表示。我们提出的网络利用稀疏的卷积使用层次多尺度3D功能学习来使用上一个帧编码当前帧。我们在目标坐标上采用卷积来将上一个帧的潜在表示为当前帧的降采样坐标,以预测当前帧的特征嵌入。我们的框架通过使用学习的概率分解熵模型来压缩预测功能的残差和实际特征。在接收器中,解码器层次结构通过逐步重新嵌入功能嵌入来重建当前框架。我们将我们的模型与基于最先进的视频点云压缩(V-PCC)和基于几何的点云压缩(G-PCC)方案进行了比较,该方案由Moving Picture Experts Group(MPEG)标准化。我们的方法实现了91%以上的BD率Bjontegaard三角洲率)降低了G-PCC,针对V-PCC框架内编码模式的BD率降低了62%以上,而对于V-PC。使用HEVC,基于PCC P框架的框架间编码模式。
translated by 谷歌翻译
本研究通过基于稀疏的张量处理(STP)的Voxelized PCG的多尺度表示,通过稀疏的张解器处理(STP)进行了一种统一点云几何形状(PCG)压缩方法。应用STP显着降低了复杂性,因为它只执行以最可能的积极占用体素(MP-POV)为中心的卷曲。并且多尺度代表有助于我们逐步压缩规模明智的MP-POV。总压缩效率高度取决于每个MP-POV的占用概率的近似精度。因此,我们设计基于稀疏的卷积的神经网络(Sparsecnn),包括稀疏卷曲和体素重新采样以广泛利用前沿。然后,我们开发基于SPARSECNN的占用概率近似(SOPA)模型,以估计在单阶段的方式中仅在逐步使用自回归邻居之前或以多阶段使用的横级或以多级的方式估计占用概率。此外,我们还建议基于SPARSECNN的本地邻居嵌入(SLNE),以表征当地空间变化作为改进SOPA的特征属性。我们的统一方法显示了在与MPEG G-PCC相比的各种数据集中,包括致密PCG(8iVFB,OWLII)和稀疏LIDAR PCG(KITTI,FORD)的各种数据集中的无损压缩模式中的最先进的性能和其他基于学习的压缩方案。此外,所提出的方法由于跨越所有尺度的模型共享而引起的轻量级复杂性,并且由于模型共享。我们使所有材料可在HTTPS://github.com/njuvision/sparsepcgc上公开访问可重复的研究。
translated by 谷歌翻译
通过移动激光扫描和图像构建有色点的云是测量和映射的基本工作。它也是为智能城市建造数字双胞胎的重要先决条件。但是,现有的公共数据集要么是相对较小的规模,要么缺乏准确的几何和彩色地面真理。本文记录了一个名为Polyu-BPComa的多功能数据集,该数据集可独特地定位于移动着色映射。该数据集在背包平台上包含3D激光雷达,球形成像,GNSS和IMU的资源。颜色检查器板在每个调查区域粘贴,因为目标和地面真相数据是由先进的陆地激光扫描仪(TLS)收集的。 3D几何信息和颜色信息可以分别在背包系统和TLS产生的有色点云中恢复。因此,我们提供了一个机会,可以同时为移动多感官系统对映射和着色精度进行基准测试。该数据集的尺寸约为800 GB,涵盖室内和室外环境。数据集和开发套件可在https://github.com/chenpengxin/polyu-bpcoma.git上找到。
translated by 谷歌翻译
在本文中,我们使用两个无监督的学习算法的组合介绍了路边激光雷达物体检测的解决方案。 3D点云数据首先将球形坐标转换成球形坐标并使用散列函数填充到方位角网格矩阵中。之后,RAW LIDAR数据被重新排列成空间 - 时间数据结构,以存储范围,方位角和强度的信息。基于强度信道模式识别,应用动态模式分解方法将点云数据分解成低级背景和稀疏前景。三角算法根据范围信息,自动发现分割值以将移动目标与静态背景分开。在强度和范围背景减法之后,将使用基于密度的检测器检测到前景移动物体,并编码到状态空间模型中以进行跟踪。所提出的模型的输出包括车辆轨迹,可以实现许多移动性和安全应用。该方法针对商业流量数据收集平台进行了验证,并证明了对基础设施激光雷达对象检测的高效可靠的解决方案。与之前的方法相比,该方法直接处理散射和离散点云,所提出的方法可以建立3D测量数据的复杂线性关系较小,这捕获了我们经常需要的空间时间结构。
translated by 谷歌翻译
Perception in autonomous vehicles is often carried out through a suite of different sensing modalities. Given the massive amount of openly available labeled RGB data and the advent of high-quality deep learning algorithms for image-based recognition, high-level semantic perception tasks are pre-dominantly solved using high-resolution cameras. As a result of that, other sensor modalities potentially useful for this task are often ignored. In this paper, we push the state of the art in LiDAR-only semantic segmentation forward in order to provide another independent source of semantic information to the vehicle. Our approach can accurately perform full semantic segmentation of LiDAR point clouds at sensor frame rate. We exploit range images as an intermediate representation in combination with a Convolutional Neural Network (CNN) exploiting the rotating LiDAR sensor model. To obtain accurate results, we propose a novel postprocessing algorithm that deals with problems arising from this intermediate representation such as discretization errors and blurry CNN outputs. We implemented and thoroughly evaluated our approach including several comparisons to the state of the art. Our experiments show that our approach outperforms state-of-the-art approaches, while still running online on a single embedded GPU. The code can be accessed at https://github.com/PRBonn/lidar-bonnetal.
translated by 谷歌翻译
在可预见的未来,自治车辆将在他们无法自行解决的情况下需要人类的帮助。在这种情况下,来自人类的远程辅助可以为车辆提供所需的输入来继续其操作。自动车辆中使用的典型传感器包括相机和激光雷达传感器。由于必须实时发送的传感器数据量的大量,高效的数据压缩是基本上的,以防止网络基础设施过载。使用深生成的神经网络的传感器数据压缩已经显示为图像和激光雷达数据的传统压缩方法,关于压缩率以及重建质量。然而,缺乏关于基于生成 - 神经网络的压缩算法进行远程辅助的性能的研究。为了在远程辅助中深入了解使用深度生成模型的可行性,我们评估了最先进的算法,了解其适用性并识别潜在的弱点。此外,我们实施了用于处理传感器数据的在线管道,并使用Carla模拟器演示其对远程辅助的性能。
translated by 谷歌翻译
我们提出了一种基于多普勒速度的基于群体和速度估计算法,基于FMCW利达的特性,实现了高精度,单扫描和实时运动状态检测和速度估计。我们证明了同一物体上的多普勒速度的连续性。基于这一原理,我们通过区域生长聚类算法实现了移动物体和静止背景之间的区别。所获得的固定背景将用于通过最小二乘法估计FMCW激光雷达的速度。然后,我们使用估计的LIDAR速度和通过聚类获得的移动物体的多普勒速度来估计移动物体的速度。为确保实时处理,我们设置了适当的最小二乘参数。同时,为了验证算法的有效性,我们在自动驾驶仿真平台Carla上创建FMCW激光雷达模型,用于产卵数据。结果表明,我们的算法可以在Ryzen 3600x CPU的算术功率下处理至少45米的点,并估计每秒150个移动物体的速度,运动状态检测精度超过99%,估计速度精度为0.1多发性硬化症。
translated by 谷歌翻译
点云压缩(PCC)是各种3-D应用程序的关键推动器,这是由于点云格式的通用性。理想情况下,3D点云努力描绘了连续的对象/场景表面。实际上,作为一组离散样本,点云是局部断开连接并稀疏分布的。这种稀疏的性质阻碍了在压缩点之间发现局部相关性的发现。通过分形维度的分析,我们提出了一种异质方法,并深入学习有损耗的点云几何压缩。在压缩输入的粗表示的基础层的顶部上,增强层的设计旨在应对具有挑战性的几何残差/详细信息。具体而言,应用基于点的网络将不稳定的本地详细信息转换为位于粗点云上的潜在特征。然后启动了在粗点云上运行的稀疏卷积神经网络。它利用粗糙几何形状的连续性/平滑度来压缩潜在特征,作为增强的位流,极大地使重建质量受益。当此位流不可用时,例如,由于数据包丢失,我们支持具有相同体系结构的跳过模式,该模式直接从粗点云中生成几何细节。对密度和稀疏点云的实验证明了我们的提案实现的最新压缩性能。我们的代码可在https://github.com/interdigitalinc/grasp-net上找到。
translated by 谷歌翻译
许多施工机器人任务(例如自动水泥抛光或机器人石膏喷涂)需要高精度3D表面信息。但是,目前在市场上发现的消费级深度摄像头还不够准确,对于需要毫米(mm)级别准确性的这些任务。本文介绍了SL传感器,SL传感器是一种结构化的光传感溶液,能够通过利用相移初量法(PSP)编码技术来生产5 Hz的高保真点云。将SL传感器与两个商用深度摄像机进行了比较 - Azure Kinect和Realsense L515。实验表明,SL传感器以室内表面重建应用的精度和精度超过了两个设备。此外,为了证明SL传感器成为机器人应用的结构化光传感研究平台的能力,开发了运动补偿策略,该策略允许SL传感器在传统PSP方法仅在传感器静态时工作时在线性运动过程中运行。现场实验表明,SL传感器能够生成喷雾灰泥表面的高度详细的重建。机器人操作系统(ROS)的软件和SL传感器的示例硬件构建是开源的,其目的是使结构化的光传感更容易被施工机器人社区访问。所有文档和代码均可在https://github.com/ethz-asl/sl_sensor/上获得。
translated by 谷歌翻译
Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
传统的LIDAR射测(LO)系统主要利用从经过的环境获得的几何信息来注册激光扫描并估算Lidar Ego-Motion,而在动态或非结构化环境中可能不可靠。本文提出了Inten-loam,一种低饮用和健壮的激光镜和映射方法,该方法完全利用激光扫描的隐式信息(即几何,强度和时间特征)。扫描点被投影到圆柱形图像上,这些图像有助于促进各种特征的有效和适应性提取,即地面,梁,立面和反射器。我们提出了一种新型基于强度的点登记算法,并将其纳入LIDAR的探光仪,从而使LO系统能够使用几何和强度特征点共同估计LIDAR EGO-MOTION。为了消除动态对象的干扰,我们提出了一种基于时间的动态对象删除方法,以在MAP更新之前过滤它们。此外,使用与时间相关的体素网格滤波器组织并缩减了本地地图,以维持当前扫描和静态局部图之间的相似性。在模拟和实际数据集上进行了广泛的实验。结果表明,所提出的方法在正常驾驶方案中实现了类似或更高的精度W.R.T,在非结构化环境中,最先进的方法优于基于几何的LO。
translated by 谷歌翻译
事件摄像机最近在高动力或具有挑战性的照明情况下具有强大的常规摄像头的潜力,因此摄影机最近变得越来越受欢迎。通过同时定位和映射(SLAM)给出了可能受益于事件摄像机的重要问题。但是,为了确保在包含事件的多传感器大满贯上进展,需要新颖的基准序列。我们的贡献是使用包含基于事件的立体声摄像机,常规立体声摄像机,多个深度传感器和惯性测量单元的多传感器设置捕获的第一组基准数据集。该设置是完全硬件同步的,并且经过了准确的外部校准。所有序列都均均均均由高度准确的外部参考设备(例如运动捕获系统)捕获的地面真相数据。各个序列都包括小型和大型环境,并涵盖动态视觉传感器针对的特定挑战。
translated by 谷歌翻译
LIDAR传感器对于自动驾驶汽车和智能机器人的感知系统至关重要。为了满足现实世界应用程序中的实时要求,有必要有效地分割激光扫描。以前的大多数方法将3D点云直接投影到2D球形范围图像上,以便它们可以利用有效的2D卷积操作进行图像分割。尽管取得了令人鼓舞的结果,但在球形投影中,邻里信息尚未保存得很好。此外,在单个扫描分割任务中未考虑时间信息。为了解决这些问题,我们提出了一种新型的语义分割方法,用于元素rangeseg的激光雷达序列,其中引入了新的范围残差图像表示以捕获空间时间信息。具体而言,使用元内核来提取元特征,从而减少了2D范围图像坐标输入和3D笛卡尔坐标输出之间的不一致。有效的U-NET主链用于获得多尺度功能。此外,特征聚合模块(FAM)增强了范围通道的作用,并在不同级别上汇总特征。我们已经进行了广泛的实验,以评估semantickitti和semanticposs。有希望的结果表明,我们提出的元rangeseg方法比现有方法更有效。我们的完整实施可在https://github.com/songw-zju/meta-rangeseg上公开获得。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
旋转激光雷达数据对于3D感知任务普遍存在,但尚未研究其圆柱形图像形式。传统方法将扫描视为点云,并且它们依赖于昂贵的欧几里德3D最近邻居搜索数据关联或依赖于投影范围图像以进行进一步处理。我们重新审视LIDAR扫描形成,并呈现来自原始扫描数据的圆柱形范围图像表示,配备有效校准的球形投射模型。通过我们的配方,我们1)收集一个LIDAR数据的大型数据集,包括室内和室外序列,伴随着伪接地的真理姿势;2)评估综合性和现实世界转型的序列上的投影和常规登记方法;3)将最先进的RGB-D算法转移到LIDAR,其运行高达180 Hz的注册和150 Hz以进行密集的重建。数据集和工具将被释放。
translated by 谷歌翻译
同时本地化和映射(SLAM)正在现实世界应用中部署,但是在许多常见情况下,许多最先进的解决方案仍然在困难。进步的SLAM研究的关键是高质量数据集的可用性以及公平透明的基准测试。为此,我们创建了Hilti-Oxford数据集,以将最新的SLAM系统推向其极限。该数据集面临着各种挑战,从稀疏和常规的建筑工地到17世纪的新古典建筑,并具有细节和弯曲的表面。为了鼓励多模式的大满贯方法,我们设计了一个具有激光雷达,五个相机和IMU(惯性测量单元)的数据收集平台。为了对精度和鲁棒性至关重要的任务进行基准测试量算法,我们实施了一种新颖的地面真相收集方法,使我们的数据集能够以毫米精度准确地测量SLAM姿势错误。为了进一步确保准确性,我们平台的外部设备通过微米精确的扫描仪进行了验证,并使用硬件时间同步在线管理时间校准。我们数据集的多模式和多样性吸引了大量的学术和工业研究人员进入第二版《希尔蒂·斯拉姆挑战赛》,该挑战于2022年6月结束。挑战的结果表明,尽管前三名团队可以实现准确性在某些序列中的2厘米或更高的速度中,性能以更困难的序列下降。
translated by 谷歌翻译
为基于几何的点云压缩(G-PCC)标准开发了基于学习的自适应环滤波器,以减少属性压缩工件。提出的方法首先生成多个最可行的样品偏移(MPSO)作为潜在的压缩失真近似值,然后线性权重以减轻伪影。因此,我们将过滤后的重建驱动尽可能靠近未压缩的PCA。为此,我们设计了一个由两个连续的处理阶段组成的压缩工件还原网络(CARNET):MPSOS推导和MPSOS组合。 MPSOS派生使用两个流网络来模拟来自直接空间嵌入和频率依赖性嵌入的局部邻域变化,在该嵌入中,稀疏的卷积被利用可从细微和不规则分布的点中最佳汇总信息。 MPSOS组合由最小平方误量学指导,以进一步捕获输入PCAS的内容动力学,从而得出加权系数。 Carnet作为GPCC的环内过滤工具实现,其中这些线性加权系数被封装在比特斯流中,并以忽略不计的比特率开销。实验结果表明,对最新的GPCC的主观和客观性都显着改善。
translated by 谷歌翻译
我们认为,作为离散位置向量值体积功能的采样点云的属性。为了压缩所提供的位置属性,我们压缩体积函数的参数。我们通过平铺空间成块,并通过基于坐标的,或隐式的,神经网络的偏移较每个块中的函数的体积函数建模。输入到网络包括空间坐标和每个块的潜矢量。我们代表使用区域自适应分级的系数潜矢量变换在MPEG基于几何形状的点云的编解码器G-PCC使用(RAHT)。的系数,这是高度可压缩的,是速率 - 失真通过在自动解码器配置的速率 - 失真拉格朗日损失由反向传播最优化。结果由2-4分贝优于RAHT。这是第一工作由局部坐标为基础的神经网络为代表的压缩体积的功能。因此,我们希望它是适用超越的点云,例如高分辨率的神经辐射场的压缩。
translated by 谷歌翻译