权重和激活的量化是减少深神经网络(DNN)训练的计算占地面积的主要方法之一。当前方法使得4位量化的前向阶段。但是,这仅构成了培训过程的三分之一。减少整个训练过程的计算占地面积需要定量神经梯度,即相对于中间神经层的输出的损耗梯度。在这项工作中,我们研究了在量化神经网络训练中具有无偏差值的重要性,以及如何维护它,以及如何。基于此,我们建议一个$ \ texit {logarithic unbiased量化} $(luq)方法,以将前向和向后阶段量化为4位,实现最先进的导致4位训练,没有开销。例如,在Imagenet的Reset50中,我们实现了1.18%的降级。我们进一步改善了这一点以降解仅在高精度微调的单一时期与差异减少方法结合后的单一时期 - 均增加与先前建议的方法相当的开销。最后,我们建议使用低精度格式的方法来避免在训练过程的三分之二期间乘法,从而减少乘法器使用的5倍。
translated by 谷歌翻译
代表低精度的深度神经网络(DNN)是一种有希望的方法来实现有效的加速和记忆力。以前的方法在低精度中培训DNN的方法通常在重量更新期间在高精度中保持重量的重量副本。由于低精度数字系统与学习算法之间的复杂相互作用,直接具有低精度重量的培训导致精度下降。为了解决这个问题,我们开发了一个共同设计的低精度训练框架,被称为LNS-MADAM,我们共同设计了对数号系统(LNS)和乘法权重算法(MADAM)。我们证明了LNS-MADAM在重量更新期间导致低量化误差,即使精度有限,也导致稳定的收敛。我们进一步提出了LNS-MADAM的硬件设计,可以解决实现LNS计算的有效数据路径的实际挑战。我们的实现有效地降低了LNS - 整数转换和部分总和累积所产生的能量开销。实验结果表明,LNS-MADAM为全精密对应物达到了可比的准确性,只有8位对流行的计算机视觉和自然语言任务。与全精密浮点实施相比,LNS-MADAM将能耗降低超过90。
translated by 谷歌翻译
We introduce a method to train Quantized Neural Networks (QNNs) -neural networks with extremely low precision (e.g., 1-bit) weights and activations, at run-time. At traintime the quantized weights and activations are used for computing the parameter gradients. During the forward pass, QNNs drastically reduce memory size and accesses, and replace most arithmetic operations with bit-wise operations. As a result, power consumption is expected to be drastically reduced. We trained QNNs over the MNIST, CIFAR-10, SVHN and ImageNet datasets. The resulting QNNs achieve prediction accuracy comparable to their 32-bit counterparts. For example, our quantized version of AlexNet with 1-bit weights and 2-bit activations achieves 51% top-1 accuracy. Moreover, we quantize the parameter gradients to 6-bits as well which enables gradients computation using only bit-wise operation. Quantized recurrent neural networks were tested over the Penn Treebank dataset, and achieved comparable accuracy as their 32-bit counterparts using only 4-bits. Last but not least, we programmed a binary matrix multiplication GPU kernel with which it is possible to run our MNIST QNN 7 times faster than with an unoptimized GPU kernel, without suffering any loss in classification accuracy. The QNN code is available online.
translated by 谷歌翻译
当量化神经网络以进行有效推断时,低位整数是效率的首选格式。但是,低位浮点数具有额外的自由度,分配了一些以指数级的工作。本文深入研究了神经网络推断的浮点格式的这种好处。我们详细介绍了可以为FP8格式做出的选择,包括对Mantissa和Exponent的位数的重要选择,并通过分析显示这些选择可以提供更好的性能。然后,我们展示了这些发现如何转化为真实网络,为FP8模拟提供有效的实现,以及一种新算法,该算法能够学习比例参数和FP8格式中的指数位数。我们的主要结论是,在对各种网络进行培训后量化时,就准确性而言,FP8格式优于INT8,并且指数位数量的选择是由网络中异常值的严重性驱动的。我们还通过量化感知训练进行实验,在训练网络以降低离群值的效果时,格式的差异消失。
translated by 谷歌翻译
深神经网络(DNN)的庞大计算和记忆成本通常排除了它们在资源约束设备中的使用。将参数和操作量化为较低的位精确,为神经网络推断提供了可观的记忆和能量节省,从而促进了在边缘计算平台上使用DNN。量化DNN的最新努力采用了一系列技术,包括渐进式量化,步进尺寸的适应性和梯度缩放。本文提出了一种针对边缘计算的混合精度卷积神经网络(CNN)的新量化方法。我们的方法在模型准确性和内存足迹上建立了一个新的Pareto前沿,展示了一系列量化模型,可提供低于4.3 MB的权重(WGTS。)和激活(ACTS。)。我们的主要贡献是:(i)用张量学的学习精度,(ii)WGTS的靶向梯度修饰,(i)硬件感知的异质可区分量化。和行为。为了减轻量化错误,以及(iii)多相学习时间表,以解决从更新到学习的量化器和模型参数引起的学习不稳定性。我们证明了我们的技术在Imagenet数据集上的有效性,包括高效网络lite0(例如,WGTS。的4.14MB和ACTS。以67.66%的精度)和MobilenEtV2(例如3.51MB WGTS。 % 准确性)。
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
量化是一种降低DNN模型的计算和记忆成本的技术,DNN模型越来越大。现有的量化解决方案使用固定点整数或浮点类类型,这些量子的好处有限,因为两者都需要更多位以保持原始型号的准确性。另一方面,可变长度量化使用低位量化对正常值和高精度的分数对异常值的一部分。即使这项工作带来了算法的好处,但由于长度的编码和解码,它也引入了重要的硬件开销。在这项工作中,我们提出了一种称为ANT的固定长度自适应数值数据类型,以通过微小的硬件开销实现低位量化。我们的数据类型ANT利用了两项关键创新来利用DNN模型中的张贴内和调整的自适应机会。首先,我们提出了一种特定的数据类型Flint,该数据类型结合了Float和INT的优势,以适应张量中不同值的重要性。其次,我们提出了一个自适应框架,该框架根据其分布特性选择每个张量的最佳类型。我们为蚂蚁设计了统一的处理元件体系结构,并显示其与现有DNN加速器的易于集成。我们的设计导致2.8 $ \ times $速度和2.5 $ \ times $ $ $ $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $比最先进的量化加速器提高了能源效率。
translated by 谷歌翻译
内存处理(PIM)是一种越来越多地研究的神经形态硬件,承诺能量和吞吐量改进以进行深度学习推断。 PIM利用大量平行,有效的模拟计算在内存内部,绕过传统数字硬件中数据移动的瓶颈。但是,需要额外的量化步骤(即PIM量化),通常由于硬件约束而导致的分辨率有限,才能将模拟计算结果转换为数字域。同时,由于不完善的类似物到数字界面,PIM量化中的非理想效应广泛存在,这进一步损害了推理的准确性。在本文中,我们提出了一种培训量化网络的方法,以合并PIM量化,这对所有PIM系统无处不在。具体而言,我们提出了PIM量化意识培训(PIM-QAT)算法,并通过分析训练动力学以促进训练收敛,从而在向后传播期间引入重新传播技术。我们还提出了两种技术,即批处理归一化(BN)校准和调整精度训练,以抑制实际PIM芯片中涉及的非理想线性和随机热噪声的不利影响。我们的方法在三个主流PIM分解方案上进行了验证,并在原型芯片上进行了物理上的验证。与直接在PIM系统上部署常规训练的量化模型相比,该模型没有考虑到此额外的量化步骤并因此失败,我们的方法提供了重大改进。它还可以在CIFAR10和CIFAR100数据集上使用各种网络深度来获得最受欢迎的网络拓扑结构,在CIFAR10和CIFAR100数据集上,在PIM系统上达到了可比的推理精度。
translated by 谷歌翻译
模型量化已成为加速深度学习推理的不可或缺的技术。虽然研究人员继续推动量化算法的前沿,但是现有量化工作通常是不可否认的和不可推销的。这是因为研究人员不选择一致的训练管道并忽略硬件部署的要求。在这项工作中,我们提出了模型量化基准(MQBench),首次尝试评估,分析和基准模型量化算法的再现性和部署性。我们为实际部署选择多个不同的平台,包括CPU,GPU,ASIC,DSP,并在统一培训管道下评估广泛的最新量化算法。 MQBENCK就像一个连接算法和硬件的桥梁。我们进行全面的分析,并找到相当大的直观或反向直观的见解。通过对齐训练设置,我们发现现有的算法在传统的学术轨道上具有大致相同的性能。虽然用于硬件可部署量化,但有一个巨大的精度差距,仍然不稳定。令人惊讶的是,没有现有的算法在MQBench中赢得每一项挑战,我们希望这项工作能够激发未来的研究方向。
translated by 谷歌翻译
训练后量化(PTQ)由于其在部署量化的神经网络方面的便利性而引起了越来越多的关注。 Founding是量化误差的主要来源,仅针对模型权重进行了优化,而激活仍然使用圆形至最终操作。在这项工作中,我们首次证明了精心选择的激活圆形方案可以提高最终准确性。为了应对激活舍入方案动态性的挑战,我们通过简单的功能适应圆形边框,以在推理阶段生成圆形方案。边界函数涵盖了重量误差,激活错误和传播误差的影响,以消除元素误差的偏差,从而进一步受益于模型的准确性。我们还使边境意识到全局错误,以更好地拟合不同的到达激活。最后,我们建议使用Aquant框架来学习边界功能。广泛的实验表明,与最先进的作品相比,Aquant可以通过可忽略不计的开销来取得明显的改进,并将Resnet-18的精度提高到2位重量和激活后训练后量化下的精度最高60.3 \%。
translated by 谷歌翻译
当通过模拟量化训练神经网络时,我们观察到,量化的权重可以意外地在两个网格点之间振荡。这种效果的重要性及其对量化感知培训(QAT)的影响并未在文献中得到充分理解或研究。在本文中,我们更深入地研究了重量振荡现象,并表明由于推理过程中错误估计的批次纳入统计量和训练期间的噪声增加,它可能导致明显的准确性降解。这些效果在低位($ \ leq $ 4位)的高效网络中尤其明显,具有深度可分开的层,例如mobilenets和效率网络。在我们的分析中,我们研究了一些先前提出的QAT算法,并表明其中大多数无法克服振荡。最后,我们提出了两种新型的QAT算法来克服训练期间的振荡:振荡衰减和迭代重量冻结。我们证明,我们的算法对于低位(3&4位)的重量(3&4位)的最新精度以及有效体系结构的激活量化,例如MobilenetV2,MobilenetV3和Imagenet上的EfficentNet-Lite。我们的源代码可在{https://github.com/qualcomm-ai-research/oscillations-qat}上获得。
translated by 谷歌翻译
数据剪辑对于降低量化操作中的噪声和提高量化感知训练(QAT)的准确性至关重要。当前的实践依靠启发式方法来设置剪接阈值标量,不能证明是最佳的。我们提出了最佳的剪切张量和向量(octav),这是一种递归算法,以确定MSE最佳的剪切标量。 OCTAV源自Fast Newton-Raphson方法,在QAT例程的每一个迭代中,都可以随时发现最佳的剪切标量。因此,QAT算法在每个步骤中都具有可证明的最小量化噪声配制。此外,我们揭示了QAT中常见梯度估计技术的局限性,并提出了幅度感知的分化,以进一步提高准确性。在实验上,启用了八度的QAT在多个任务上实现了最先进的精度。其中包括在ImageNet上进行训练,并在ImageNet上进行重新注册和Mobilenets,以及使用BERT模型进行微调,其中启用八叶速度的QAT始终以低精度(4到6位)保持准确性。我们的结果不需要对基线训练配方进行任何修改,除了在适当的情况下插入量化操作。
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译
由于神经网络变得更加强大,因此在现实世界中部署它们的愿望是一个上升的愿望;然而,神经网络的功率和准确性主要是由于它们的深度和复杂性,使得它们难以部署,尤其是在资源受限的设备中。最近出现了神经网络量化,以满足这种需求通过降低网络的精度来降低神经网络的大小和复杂性。具有较小和更简单的网络,可以在目标硬件的约束中运行神经网络。本文调查了在过去十年中开发的许多神经网络量化技术。基于该调查和神经网络量化技术的比较,我们提出了该地区的未来研究方向。
translated by 谷歌翻译
已经证明量化是提高深神经网络推理效率的重要方法(DNN)。然而,在将DNN权重或从高精度格式从高精度格式量化到它们量化的对应物的同时,在准确性和效率之间取得良好的平衡仍然具有挑战性。我们提出了一种称为弹性显着位量化(ESB)的新方法,可控制量化值的有效位数,以获得具有更少资源的更好的推理准确性。我们设计一个统一的数学公式,以限制ESB的量化值,具有灵活的有效位。我们还引入了分布差对准器(DDA),以定量对齐全精密重量或激活值和量化值之间的分布。因此,ESB适用于各种重量和DNN的激活的各种钟形分布,从而保持高推理精度。从较少的量化值中受益于较少的量化值,ESB可以降低乘法复杂性。我们将ESB实施为加速器,并定量评估其对FPGA的效率。广泛的实验结果表明,ESB量化始终如一地优于最先进的方法,并分别通过AlexNet,Resnet18和MobileNetv2的平均精度提高4.78%,1.92%和3.56%。此外,ESB作为加速器可以在Xilinx ZCU102 FPGA平台上实现1K LUT的10.95 GOPS峰值性能。与FPGA上的CPU,GPU和最先进的加速器相比,ESB加速器可以分别将能效分别提高到65倍,11x和26倍。
translated by 谷歌翻译
Although weight and activation quantization is an effective approach for Deep Neural Network (DNN) compression and has a lot of potentials to increase inference speed leveraging bit-operations, there is still a noticeable gap in terms of prediction accuracy between the quantized model and the full-precision model. To address this gap, we propose to jointly train a quantized, bit-operation-compatible DNN and its associated quantizers, as opposed to using fixed, handcrafted quantization schemes such as uniform or logarithmic quantization. Our method for learning the quantizers applies to both network weights and activations with arbitrary-bit precision, and our quantizers are easy to train. The comprehensive experiments on CIFAR-10 and ImageNet datasets show that our method works consistently well for various network structures such as AlexNet, VGG-Net, GoogLeNet, ResNet, and DenseNet, surpassing previous quantization methods in terms of accuracy by an appreciable margin. Code available at https://github.com/Microsoft/LQ-Nets
translated by 谷歌翻译
Quantization has become a predominant approach for model compression, enabling deployment of large models trained on GPUs onto smaller form-factor devices for inference. Quantization-aware training (QAT) optimizes model parameters with respect to the end task while simulating quantization error, leading to better performance than post-training quantization. Approximation of gradients through the non-differentiable quantization operator is typically achieved using the straight-through estimator (STE) or additive noise. However, STE-based methods suffer from instability due to biased gradients, whereas existing noise-based methods cannot reduce the resulting variance. In this work, we incorporate exponentially decaying quantization-error-aware noise together with a learnable scale of task loss gradient to approximate the effect of a quantization operator. We show this method combines gradient scale and quantization noise in a better optimized way, providing finer-grained estimation of gradients at each weight and activation layer's quantizer bin size. Our controlled noise also contains an implicit curvature term that could encourage flatter minima, which we show is indeed the case in our experiments. Experiments training ResNet architectures on the CIFAR-10, CIFAR-100 and ImageNet benchmarks show that our method obtains state-of-the-art top-1 classification accuracy for uniform (non mixed-precision) quantization, out-performing previous methods by 0.5-1.2% absolute.
translated by 谷歌翻译
When training early-stage deep neural networks (DNNs), generating intermediate features via convolution or linear layers occupied most of the execution time. Accordingly, extensive research has been done to reduce the computational burden of the convolution or linear layers. In recent mobile-friendly DNNs, however, the relative number of operations involved in processing these layers has significantly reduced. As a result, the proportion of the execution time of other layers, such as batch normalization layers, has increased. Thus, in this work, we conduct a detailed analysis of the batch normalization layer to efficiently reduce the runtime overhead in the batch normalization process. Backed up by the thorough analysis, we present an extremely efficient batch normalization, named LightNorm, and its associated hardware module. In more detail, we fuse three approximation techniques that are i) low bit-precision, ii) range batch normalization, and iii) block floating point. All these approximate techniques are carefully utilized not only to maintain the statistics of intermediate feature maps, but also to minimize the off-chip memory accesses. By using the proposed LightNorm hardware, we can achieve significant area and energy savings during the DNN training without hurting the training accuracy. This makes the proposed hardware a great candidate for the on-device training.
translated by 谷歌翻译
深度学习在广泛的AI应用方面取得了有希望的结果。较大的数据集和模型一致地产生更好的性能。但是,我们一般花费更长的培训时间,以更多的计算和沟通。在本调查中,我们的目标是在模型精度和模型效率方面提供关于大规模深度学习优化的清晰草图。我们调查最常用于优化的算法,详细阐述了大批量培训中出现的泛化差距的可辩论主题,并审查了解决通信开销并减少内存足迹的SOTA策略。
translated by 谷歌翻译
在本文中,提出了一种新的方法,该方法允许基于神经网络(NN)均衡器的低复杂性发展,以缓解高速相干光学传输系统中的损伤。在这项工作中,我们提供了已应用于馈电和经常性NN设计的各种深层模型压缩方法的全面描述和比较。此外,我们评估了这些策略对每个NN均衡器的性能的影响。考虑量化,重量聚类,修剪和其他用于模型压缩的尖端策略。在这项工作中,我们提出并评估贝叶斯优化辅助压缩,其中选择了压缩的超参数以同时降低复杂性并提高性能。总之,通过使用模拟和实验数据来评估每种压缩方法的复杂性及其性能之间的权衡,以完成分析。通过利用最佳压缩方法,我们表明可以设计基于NN的均衡器,该均衡器比传统的数字背部传播(DBP)均衡器具有更好的性能,并且只有一个步骤。这是通过减少使用加权聚类和修剪算法后在NN均衡器中使用的乘数数量来完成的。此外,我们证明了基于NN的均衡器也可以实现卓越的性能,同时仍然保持与完整的电子色色散补偿块相同的复杂性。我们通过强调开放问题和现有挑战以及未来的研究方向来结束分析。
translated by 谷歌翻译