当量化神经网络以进行有效推断时,低位整数是效率的首选格式。但是,低位浮点数具有额外的自由度,分配了一些以指数级的工作。本文深入研究了神经网络推断的浮点格式的这种好处。我们详细介绍了可以为FP8格式做出的选择,包括对Mantissa和Exponent的位数的重要选择,并通过分析显示这些选择可以提供更好的性能。然后,我们展示了这些发现如何转化为真实网络,为FP8模拟提供有效的实现,以及一种新算法,该算法能够学习比例参数和FP8格式中的指数位数。我们的主要结论是,在对各种网络进行培训后量化时,就准确性而言,FP8格式优于INT8,并且指数位数量的选择是由网络中异常值的严重性驱动的。我们还通过量化感知训练进行实验,在训练网络以降低离群值的效果时,格式的差异消失。
translated by 谷歌翻译
量化是一种降低DNN模型的计算和记忆成本的技术,DNN模型越来越大。现有的量化解决方案使用固定点整数或浮点类类型,这些量子的好处有限,因为两者都需要更多位以保持原始型号的准确性。另一方面,可变长度量化使用低位量化对正常值和高精度的分数对异常值的一部分。即使这项工作带来了算法的好处,但由于长度的编码和解码,它也引入了重要的硬件开销。在这项工作中,我们提出了一种称为ANT的固定长度自适应数值数据类型,以通过微小的硬件开销实现低位量化。我们的数据类型ANT利用了两项关键创新来利用DNN模型中的张贴内和调整的自适应机会。首先,我们提出了一种特定的数据类型Flint,该数据类型结合了Float和INT的优势,以适应张量中不同值的重要性。其次,我们提出了一个自适应框架,该框架根据其分布特性选择每个张量的最佳类型。我们为蚂蚁设计了统一的处理元件体系结构,并显示其与现有DNN加速器的易于集成。我们的设计导致2.8 $ \ times $速度和2.5 $ \ times $ $ $ $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $ $ \ times $比最先进的量化加速器提高了能源效率。
translated by 谷歌翻译
当通过模拟量化训练神经网络时,我们观察到,量化的权重可以意外地在两个网格点之间振荡。这种效果的重要性及其对量化感知培训(QAT)的影响并未在文献中得到充分理解或研究。在本文中,我们更深入地研究了重量振荡现象,并表明由于推理过程中错误估计的批次纳入统计量和训练期间的噪声增加,它可能导致明显的准确性降解。这些效果在低位($ \ leq $ 4位)的高效网络中尤其明显,具有深度可分开的层,例如mobilenets和效率网络。在我们的分析中,我们研究了一些先前提出的QAT算法,并表明其中大多数无法克服振荡。最后,我们提出了两种新型的QAT算法来克服训练期间的振荡:振荡衰减和迭代重量冻结。我们证明,我们的算法对于低位(3&4位)的重量(3&4位)的最新精度以及有效体系结构的激活量化,例如MobilenetV2,MobilenetV3和Imagenet上的EfficentNet-Lite。我们的源代码可在{https://github.com/qualcomm-ai-research/oscillations-qat}上获得。
translated by 谷歌翻译
模型量化已成为加速深度学习推理的不可或缺的技术。虽然研究人员继续推动量化算法的前沿,但是现有量化工作通常是不可否认的和不可推销的。这是因为研究人员不选择一致的训练管道并忽略硬件部署的要求。在这项工作中,我们提出了模型量化基准(MQBench),首次尝试评估,分析和基准模型量化算法的再现性和部署性。我们为实际部署选择多个不同的平台,包括CPU,GPU,ASIC,DSP,并在统一培训管道下评估广泛的最新量化算法。 MQBENCK就像一个连接算法和硬件的桥梁。我们进行全面的分析,并找到相当大的直观或反向直观的见解。通过对齐训练设置,我们发现现有的算法在传统的学术轨道上具有大致相同的性能。虽然用于硬件可部署量化,但有一个巨大的精度差距,仍然不稳定。令人惊讶的是,没有现有的算法在MQBench中赢得每一项挑战,我们希望这项工作能够激发未来的研究方向。
translated by 谷歌翻译
数据剪辑对于降低量化操作中的噪声和提高量化感知训练(QAT)的准确性至关重要。当前的实践依靠启发式方法来设置剪接阈值标量,不能证明是最佳的。我们提出了最佳的剪切张量和向量(octav),这是一种递归算法,以确定MSE最佳的剪切标量。 OCTAV源自Fast Newton-Raphson方法,在QAT例程的每一个迭代中,都可以随时发现最佳的剪切标量。因此,QAT算法在每个步骤中都具有可证明的最小量化噪声配制。此外,我们揭示了QAT中常见梯度估计技术的局限性,并提出了幅度感知的分化,以进一步提高准确性。在实验上,启用了八度的QAT在多个任务上实现了最先进的精度。其中包括在ImageNet上进行训练,并在ImageNet上进行重新注册和Mobilenets,以及使用BERT模型进行微调,其中启用八叶速度的QAT始终以低精度(4到6位)保持准确性。我们的结果不需要对基线训练配方进行任何修改,除了在适当的情况下插入量化操作。
translated by 谷歌翻译
由于神经网络变得更加强大,因此在现实世界中部署它们的愿望是一个上升的愿望;然而,神经网络的功率和准确性主要是由于它们的深度和复杂性,使得它们难以部署,尤其是在资源受限的设备中。最近出现了神经网络量化,以满足这种需求通过降低网络的精度来降低神经网络的大小和复杂性。具有较小和更简单的网络,可以在目标硬件的约束中运行神经网络。本文调查了在过去十年中开发的许多神经网络量化技术。基于该调查和神经网络量化技术的比较,我们提出了该地区的未来研究方向。
translated by 谷歌翻译
我们向开放的神经网络交换(ONNX)中间表示格式提出扩展,以表示任意量化的量化神经网络。我们首先通过利用整数剪辑来引入对现有基于ONX的量化格式低精度量化的支持,从而产生了两个新的向后兼容的变体:带有剪辑和量化clip-dequantize(QCDQ)格式的量化运算符格式。然后,我们引入了一种新型的高级ONNX格式,称为量化ONNX(QONNX),该格式介绍了三个新运算符 - Quant,Biporlquant和Trunc,以表示均匀的量化。通过保持QONNX IR高级和灵活性,我们可以针对更广泛的平台。我们还介绍了与QONNX合作的实用程序,以及其在FINN和HLS4ML工具链中使用的示例。最后,我们介绍了QONNX模型动物园,以共享低精确的量化神经网络。
translated by 谷歌翻译
代表低精度的深度神经网络(DNN)是一种有希望的方法来实现有效的加速和记忆力。以前的方法在低精度中培训DNN的方法通常在重量更新期间在高精度中保持重量的重量副本。由于低精度数字系统与学习算法之间的复杂相互作用,直接具有低精度重量的培训导致精度下降。为了解决这个问题,我们开发了一个共同设计的低精度训练框架,被称为LNS-MADAM,我们共同设计了对数号系统(LNS)和乘法权重算法(MADAM)。我们证明了LNS-MADAM在重量更新期间导致低量化误差,即使精度有限,也导致稳定的收敛。我们进一步提出了LNS-MADAM的硬件设计,可以解决实现LNS计算的有效数据路径的实际挑战。我们的实现有效地降低了LNS - 整数转换和部分总和累积所产生的能量开销。实验结果表明,LNS-MADAM为全精密对应物达到了可比的准确性,只有8位对流行的计算机视觉和自然语言任务。与全精密浮点实施相比,LNS-MADAM将能耗降低超过90。
translated by 谷歌翻译
神经网络量化能够在边缘设备上部署模型。对其硬件效率的基本要求是平衡器是硬件友好的:均匀,对称,以及两个阈值的功率。据我们所知,目前的训练后量化方法不同时支持所有这些约束。在这项工作中,我们引入了硬件友好的训练量化(HPTQ)框架,通过协同组合几种已知的量化方法来解决这个问题。我们对四个任务进行了大规模的研究:在各种网络架构上进行分类,对象检测,语义分割和姿势估计。我们广泛的实验表明,可以在硬件友好的限制下获得竞争结果。
translated by 谷歌翻译
权重和激活的量化是减少深神经网络(DNN)训练的计算占地面积的主要方法之一。当前方法使得4位量化的前向阶段。但是,这仅构成了培训过程的三分之一。减少整个训练过程的计算占地面积需要定量神经梯度,即相对于中间神经层的输出的损耗梯度。在这项工作中,我们研究了在量化神经网络训练中具有无偏差值的重要性,以及如何维护它,以及如何。基于此,我们建议一个$ \ texit {logarithic unbiased量化} $(luq)方法,以将前向和向后阶段量化为4位,实现最先进的导致4位训练,没有开销。例如,在Imagenet的Reset50中,我们实现了1.18%的降级。我们进一步改善了这一点以降解仅在高精度微调的单一时期与差异减少方法结合后的单一时期 - 均增加与先前建议的方法相当的开销。最后,我们建议使用低精度格式的方法来避免在训练过程的三分之二期间乘法,从而减少乘法器使用的5倍。
translated by 谷歌翻译
深神经网络(DNN)的庞大计算和记忆成本通常排除了它们在资源约束设备中的使用。将参数和操作量化为较低的位精确,为神经网络推断提供了可观的记忆和能量节省,从而促进了在边缘计算平台上使用DNN。量化DNN的最新努力采用了一系列技术,包括渐进式量化,步进尺寸的适应性和梯度缩放。本文提出了一种针对边缘计算的混合精度卷积神经网络(CNN)的新量化方法。我们的方法在模型准确性和内存足迹上建立了一个新的Pareto前沿,展示了一系列量化模型,可提供低于4.3 MB的权重(WGTS。)和激活(ACTS。)。我们的主要贡献是:(i)用张量学的学习精度,(ii)WGTS的靶向梯度修饰,(i)硬件感知的异质可区分量化。和行为。为了减轻量化错误,以及(iii)多相学习时间表,以解决从更新到学习的量化器和模型参数引起的学习不稳定性。我们证明了我们的技术在Imagenet数据集上的有效性,包括高效网络lite0(例如,WGTS。的4.14MB和ACTS。以67.66%的精度)和MobilenEtV2(例如3.51MB WGTS。 % 准确性)。
translated by 谷歌翻译
As a neural network compression technique, post-training quantization (PTQ) transforms a pre-trained model into a quantized model using a lower-precision data type. However, the prediction accuracy will decrease because of the quantization noise, especially in extremely low-bit settings. How to determine the appropriate quantization parameters (e.g., scaling factors and rounding of weights) is the main problem facing now. Many existing methods determine the quantization parameters by minimizing the distance between features before and after quantization. Using this distance as the metric to optimize the quantization parameters only considers local information. We analyze the problem of minimizing local metrics and indicate that it would not result in optimal quantization parameters. Furthermore, the quantized model suffers from overfitting due to the small number of calibration samples in PTQ. In this paper, we propose PD-Quant to solve the problems. PD-Quant uses the information of differences between network prediction before and after quantization to determine the quantization parameters. To mitigate the overfitting problem, PD-Quant adjusts the distribution of activations in PTQ. Experiments show that PD-Quant leads to better quantization parameters and improves the prediction accuracy of quantized models, especially in low-bit settings. For example, PD-Quant pushes the accuracy of ResNet-18 up to 53.08% and RegNetX-600MF up to 40.92% in weight 2-bit activation 2-bit. The code will be released at https://github.com/hustvl/PD-Quant.
translated by 谷歌翻译
网络量化显着降低了模型推理复杂性,并且已广泛用于现实世界部署。然而,大多数现有量化方法已经开发并主要测试并测试卷积神经网络(CNN),并且当应用于基于变压器的架构时遭受严重的降级。在这项工作中,我们提出了一种系统方法,以降低量化变压器的性能下降和推理复杂性。特别是,我们提出了两种规模(PTS)的权力以以硬件友好的方式处理LAbernorm输入的严重频道间变化。此外,我们提出了可以维持注意力映射的极端不均匀分布的log-int-softmax(LIS),同时通过使用4位量化和比特速度操作员简化推断。关于各种变压器的架构和基准测试的综合实验表明,我们的方法在使用Leference Maps中使用甚至更低的位宽度时,我们的方法始终以前的性能。例如,我们在Imagenet上达到85.17%的高精度,51.4地图与Coco上的级联面罩R-CNN(Swin-S)。据我们所知,我们是第一个在完全量化的视觉变压器上实现可比准确性降级(〜1%)的最初。代码可在https://github.com/linyang-zhh/fq-vit使用。
translated by 谷歌翻译
The post-training quantization (PTQ) challenge of bringing quantized neural net accuracy close to original has drawn much attention driven by industry demand. Many of the methods emphasize optimization of a specific degree-of-freedom (DoF), such as quantization step size, preconditioning factors, bias fixing, often chained to others in multi-step solutions. Here we rethink quantized network parameterization in HW-aware fashion, towards a unified analysis of all quantization DoF, permitting for the first time their joint end-to-end finetuning. Our single-step simple and extendable method, dubbed quantization-aware finetuning (QFT), achieves 4-bit weight quantization results on-par with SoTA within PTQ constraints of speed and resource.
translated by 谷歌翻译
训练后量化(PTQ)由于其在部署量化的神经网络方面的便利性而引起了越来越多的关注。 Founding是量化误差的主要来源,仅针对模型权重进行了优化,而激活仍然使用圆形至最终操作。在这项工作中,我们首次证明了精心选择的激活圆形方案可以提高最终准确性。为了应对激活舍入方案动态性的挑战,我们通过简单的功能适应圆形边框,以在推理阶段生成圆形方案。边界函数涵盖了重量误差,激活错误和传播误差的影响,以消除元素误差的偏差,从而进一步受益于模型的准确性。我们还使边境意识到全局错误,以更好地拟合不同的到达激活。最后,我们建议使用Aquant框架来学习边界功能。广泛的实验表明,与最先进的作品相比,Aquant可以通过可忽略不计的开销来取得明显的改进,并将Resnet-18的精度提高到2位重量和激活后训练后量化下的精度最高60.3 \%。
translated by 谷歌翻译
已经证明量化是提高深神经网络推理效率的重要方法(DNN)。然而,在将DNN权重或从高精度格式从高精度格式量化到它们量化的对应物的同时,在准确性和效率之间取得良好的平衡仍然具有挑战性。我们提出了一种称为弹性显着位量化(ESB)的新方法,可控制量化值的有效位数,以获得具有更少资源的更好的推理准确性。我们设计一个统一的数学公式,以限制ESB的量化值,具有灵活的有效位。我们还引入了分布差对准器(DDA),以定量对齐全精密重量或激活值和量化值之间的分布。因此,ESB适用于各种重量和DNN的激活的各种钟形分布,从而保持高推理精度。从较少的量化值中受益于较少的量化值,ESB可以降低乘法复杂性。我们将ESB实施为加速器,并定量评估其对FPGA的效率。广泛的实验结果表明,ESB量化始终如一地优于最先进的方法,并分别通过AlexNet,Resnet18和MobileNetv2的平均精度提高4.78%,1.92%和3.56%。此外,ESB作为加速器可以在Xilinx ZCU102 FPGA平台上实现1K LUT的10.95 GOPS峰值性能。与FPGA上的CPU,GPU和最先进的加速器相比,ESB加速器可以分别将能效分别提高到65倍,11x和26倍。
translated by 谷歌翻译
Although weight and activation quantization is an effective approach for Deep Neural Network (DNN) compression and has a lot of potentials to increase inference speed leveraging bit-operations, there is still a noticeable gap in terms of prediction accuracy between the quantized model and the full-precision model. To address this gap, we propose to jointly train a quantized, bit-operation-compatible DNN and its associated quantizers, as opposed to using fixed, handcrafted quantization schemes such as uniform or logarithmic quantization. Our method for learning the quantizers applies to both network weights and activations with arbitrary-bit precision, and our quantizers are easy to train. The comprehensive experiments on CIFAR-10 and ImageNet datasets show that our method works consistently well for various network structures such as AlexNet, VGG-Net, GoogLeNet, ResNet, and DenseNet, surpassing previous quantization methods in terms of accuracy by an appreciable margin. Code available at https://github.com/Microsoft/LQ-Nets
translated by 谷歌翻译
模型二进制化是一种压缩神经网络并加速其推理过程的有效方法。但是,1位模型和32位模型之间仍然存在显着的性能差距。实证研究表明,二进制会导致前进和向后传播中的信息损失。我们提出了一个新颖的分布敏感信息保留网络(DIR-NET),该网络通过改善内部传播和引入外部表示,将信息保留在前后传播中。 DIR-NET主要取决于三个技术贡献:(1)最大化二进制(IMB)的信息:最小化信息损失和通过重量平衡和标准化同时同时使用权重/激活的二进制误差; (2)分布敏感的两阶段估计器(DTE):通过共同考虑更新能力和准确的梯度来通过分配敏感的软近似来保留梯度的信息; (3)代表性二进制 - 意识蒸馏(RBD):通过提炼完整精确和二元化网络之间的表示来保留表示信息。 DIR-NET从统一信息的角度研究了BNN的前进过程和后退过程,从而提供了对网络二进制机制的新见解。我们的DIR-NET中的三种技术具有多功能性和有效性,可以在各种结构中应用以改善BNN。关于图像分类和客观检测任务的综合实验表明,我们的DIR-NET始终优于主流和紧凑型体系结构(例如Resnet,vgg,vgg,EfficityNet,darts和mobilenet)下最新的二进制方法。此外,我们在现实世界中的资源有限设备上执行DIR-NET,该设备可实现11.1倍的存储空间和5.4倍的速度。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
卷积神经网络(CNN)的量化是缓解CNN部署的计算负担,尤其是在低资源边缘设备上的常见方法。但是,对于神经网络所涉及的计算类型,固定点算术并不是自然的。在这项工作中,我们探索了使用基于PDE的观点和分析来改善量化CNN的方法。首先,我们利用总变化方法(电视)方法将边缘意识平滑应用于整个网络的特征图。这旨在减少值分布的异常值并促进零件恒定图,这更适合量化。其次,我们考虑用于图像分类的常见CNN的对称和稳定变体,以及用于图源分类的图形卷积网络(GCN)。我们通过几个实验证明,正向稳定性的性质保留了在不同量化速率下网络的作用。结果,稳定的量化网络的行为与非量化的网络相似,即使它们依赖于较少的参数。我们还发现,有时,稳定性甚至有助于提高准确性。对于敏感,资源受限,低功率或实时应用(例如自动驾驶),这些属性特别感兴趣。
translated by 谷歌翻译