为优化方法建立快速的收敛速率对其在实践中的适用性至关重要。随着过去十年深入学习的普及,随机梯度下降及其自适应变体(例如,Adagagrad,Adam等)已成为机器学习从业者的突出方法。虽然大量作品已经证明,这些第一订单优化方法可以实现亚线性或线性收敛,但我们建立了随机梯度下降的局部二次收敛,具有自适应步长,矩阵反转等问题。
translated by 谷歌翻译
最近,“ SP”(随机Polyak步长)方法已成为一种竞争自适应方法,用于设置SGD的步骤尺寸。SP可以解释为专门针对插值模型的方法,因为它求解了插值方程。SP通过使用模型的局部线性化来求解这些方程。我们进一步迈出一步,并开发一种解决模型局部二阶近似的插值方程的方法。我们最终的方法SP2使用Hessian-Vector产品来加快SP的收敛性。此外,在二阶方法中,SP2的设计绝不依赖于正定的Hessian矩阵或目标函数的凸度。我们显示SP2在矩阵完成,非凸测试问题和逻辑回归方面非常有竞争力。我们还提供了关于Quadratics总和的融合理论。
translated by 谷歌翻译
许多现代机器学习算法,例如生成的对抗网络(GANS)和对抗性培训可以制定为最低限度优化。梯度下降上升(GDA)是由于其简单性导致的最常用的算法。但是,GDA可以收敛到非最佳Minimax点。我们提出了一个新的最低限度优化框架GDA-AM,将GDadynamics视为固定点迭代,并使用Anderson混合来解决局部imemax。它解决了同时GDA的发散问题加速了交替GDA的收敛性。我们从理论上显示了该算法可以在温和条件下实现Bilinear问题的全局收敛性。我们还经验证明GDA-AMSOLVES各种极少问题,并改善了几个数据集的GaN训练
translated by 谷歌翻译
随机梯度下降方法及其变体构成了实现机器学习问题的良好收敛速率的核心优化算法。尤其获得这些速率,特别是当这些算法用于手头的应用程序进行微调时。虽然这种调整过程可能需要大的计算成本,但最近的工作表明,通过线路搜索方法可以减少这些成本,可以迭代调整步骤。我们通过使用基于前向步骤模型建筑的新算法提出了一种替代方法来转移到随机线路搜索。该模型构建步骤包含了二阶信息,允许不仅调整步骤,还可以调整搜索方向。注意到深度学习模型参数分组(张量层),我们的方法构建其模型,并计算每个参数组的新步骤。这种新颖的对角化方法使所选择的步长自适应。我们提供收敛率分析,并通过实验表明,在大多数问题中,所提出的算法在大多数问题中实现更快的收敛性和更好的概括。此外,我们的实验表明,该方法的方法非常强大,因为它会收敛于各种初始步骤。
translated by 谷歌翻译
本文评价用机器学习问题的数值优化方法。由于机器学习模型是高度参数化的,我们专注于适合高维优化的方法。我们在二次模型上构建直觉,以确定哪种方法适用于非凸优化,并在凸函数上开发用于这种方法的凸起函数。随着随机梯度下降和动量方法的这种理论基础,我们试图解释为什么机器学习领域通常使用的方法非常成功。除了解释成功的启发式之外,最后一章还提供了对更多理论方法的广泛审查,这在实践中并不像惯例。所以在某些情况下,这项工作试图回答这个问题:为什么默认值中包含的默认TensorFlow优化器?
translated by 谷歌翻译
在本文中,我们考虑了第一和二阶技术来解决机器学习中产生的连续优化问题。在一阶案例中,我们提出了一种从确定性或半确定性到随机二次正则化方法的转换框架。我们利用随机优化的两相性质提出了一种具有自适应采样和自适应步长的新型一阶算法。在二阶案例中,我们提出了一种新型随机阻尼L-BFGS方法,该方法可以在深度学习的高度非凸起背景下提高先前的算法。这两种算法都在众所周知的深度学习数据集上进行评估并表现出有希望的性能。
translated by 谷歌翻译
简单的随机动量方法被广泛用于机器学习优化,但它们的良好实践表现与文献中没有理论保证的理论保证相矛盾。在这项工作中,我们的目标是通过表明随机重球动量来弥合理论和实践之间的差距,该动力可以解释为具有动量的随机kaczmarz算法,保留了二次优化问题(确定性)重球动量的快速线性速率,至少在使用足够大的批次大小的小型匹配时。该分析依赖于仔细分解动量过渡矩阵,并使用新的光谱范围浓度界限来进行独立随机矩阵的产物。我们提供数值实验,以证明我们的边界相当锐利。
translated by 谷歌翻译
We introduce SketchySGD, a stochastic quasi-Newton method that uses sketching to approximate the curvature of the loss function. Quasi-Newton methods are among the most effective algorithms in traditional optimization, where they converge much faster than first-order methods such as SGD. However, for contemporary deep learning, quasi-Newton methods are considered inferior to first-order methods like SGD and Adam owing to higher per-iteration complexity and fragility due to inexact gradients. SketchySGD circumvents these issues by a novel combination of subsampling, randomized low-rank approximation, and dynamic regularization. In the convex case, we show SketchySGD with a fixed stepsize converges to a small ball around the optimum at a faster rate than SGD for ill-conditioned problems. In the non-convex case, SketchySGD converges linearly under two additional assumptions, interpolation and the Polyak-Lojaciewicz condition, the latter of which holds with high probability for wide neural networks. Numerical experiments on image and tabular data demonstrate the improved reliability and speed of SketchySGD for deep learning, compared to standard optimizers such as SGD and Adam and existing quasi-Newton methods.
translated by 谷歌翻译
随机梯度下降血液(SGDM)是许多优化方案中的主要算法,包括凸优化实例和非凸神经网络训练。然而,在随机设置中,动量会干扰梯度噪声,通常导致特定的台阶尺寸和动量选择,以便保证收敛,留出加速。另一方面,近端点方法由于其数值稳定性和针对不完美调谐的弹性而产生了很多关注。他们随机加速的变体虽然已接受有限的注意:动量与(随机)近端点的稳定性相互作用仍然在很大程度上是不孤立的。为了解决这个问题,我们专注于随机近端点算法的动量(SPPAM)的收敛性和稳定性,并显示SPPAM与随机近端点算法(SPPA)相比具有更好的收缩因子的更快的线性收敛速度,如适当的HyperParameter调整。在稳定性方面,我们表明SPPAM取决于问题常数比SGDM更有利,允许更广泛的步长和导致收敛的动量。
translated by 谷歌翻译
我们引入了一种降低尺寸的二阶方法(DRSOM),用于凸和非凸的不受约束优化。在类似信任区域的框架下,我们的方法保留了二阶方法的收敛性,同时仅在两个方向上使用Hessian-Vector产品。此外,计算开销仍然与一阶相当,例如梯度下降方法。我们证明该方法的复杂性为$ O(\ epsilon^{ - 3/2})$,以满足子空间中的一阶和二阶条件。DRSOM的适用性和性能通过逻辑回归,$ L_2-L_P $最小化,传感器网络定位和神经网络培训的各种计算实验展示。对于神经网络,我们的初步实施似乎在训练准确性和迭代复杂性方面与包括SGD和ADAM在内的最先进的一阶方法获得了计算优势。
translated by 谷歌翻译
本文研究了拟牛顿方法求解强凸强凹鞍点问题(SPP)。我们提出了SPP一般贪婪Broyden族更新,其中有$明确的局部超线性收敛速度的变体{\mathcalØ}\大(\大(1\压裂{1}{N\卡帕^2}\大)^ {K(K-1)/ 2}\大)$,其中$N $是问题的尺寸,$ \卡帕$是条件数和$$ķ是迭代次数。设计和算法的分析是基于估计不定Hessian矩阵的平方,这是从在凸优化古典准牛顿方法的不同。我们还提出两个具体Broyden族算法与BFGS型和SR1型更新,其享受的$更快的局部收敛速度\mathcalØ\大(\大(1\压裂{1} {N}\大)^{K(K-1)/ 2}\大)$。
translated by 谷歌翻译
In this book chapter, we briefly describe the main components that constitute the gradient descent method and its accelerated and stochastic variants. We aim at explaining these components from a mathematical point of view, including theoretical and practical aspects, but at an elementary level. We will focus on basic variants of the gradient descent method and then extend our view to recent variants, especially variance-reduced stochastic gradient schemes (SGD). Our approach relies on revealing the structures presented inside the problem and the assumptions imposed on the objective function. Our convergence analysis unifies several known results and relies on a general, but elementary recursive expression. We have illustrated this analysis on several common schemes.
translated by 谷歌翻译
最近对基于置换的SGD的接地结果进行了证实了广泛观察到的现象:随机排列提供更快的收敛性,而不是更换采样。但是,是随机的最佳状态吗?我们表明这一点在很大程度上取决于我们正在优化的功能,并且最佳和随机排放之间的收敛差距可能因指数而异。我们首先表明,对于具有光滑的第二衍生物的1维强凸功能,与随机相比,存在令人指导的收敛性的排列。但是,对于一般强凸的功能,随机排列是最佳的。最后,我们表明,对于二次,强凸的功能,与随机相比,存在易于构建的置换,从而导致加速会聚。我们的研究结果表明,最佳排列的一般收敛性表征不能捕获各个函数类的细微差别,并且可能错误地表明一个人不能比随机更好。
translated by 谷歌翻译
在本文中,我们研究并证明了拟牛顿算法的Broyden阶级的非渐近超线性收敛速率,包括Davidon - Fletcher - Powell(DFP)方法和泡沫 - 弗莱彻 - 夏诺(BFGS)方法。这些准牛顿方法的渐近超线性收敛率在文献中已经广泛研究,但它们明确的有限时间局部会聚率未得到充分调查。在本文中,我们为Broyden Quasi-Newton算法提供了有限时间(非渐近的)收敛分析,在目标函数强烈凸起的假设下,其梯度是Lipschitz连续的,并且其Hessian在最佳解决方案中连续连续。我们表明,在最佳解决方案的本地附近,DFP和BFGS生成的迭代以$(1 / k)^ {k / 2} $的超连线率收敛到最佳解决方案,其中$ k $是迭代次数。我们还证明了类似的本地超连线收敛结果,因为目标函数是自我协调的情况。几个数据集的数值实验证实了我们显式的收敛速度界限。我们的理论保证是第一个为准牛顿方法提供非渐近超线性收敛速率的效果之一。
translated by 谷歌翻译
我们考虑使用梯度下降来最大程度地减少$ f(x)= \ phi(xx^{t})$在$ n \ times r $因件矩阵$ x $上,其中$ \ phi是一种基础平稳凸成本函数定义了$ n \ times n $矩阵。虽然只能在合理的时间内发现只有二阶固定点$ x $,但如果$ x $的排名不足,则其排名不足证明其是全球最佳的。这种认证全球最优性的方式必然需要当前迭代$ x $的搜索等级$ r $,以相对于级别$ r^{\ star} $过度参数化。不幸的是,过度参数显着减慢了梯度下降的收敛性,从$ r = r = r = r^{\ star} $的线性速率到$ r> r> r> r> r^{\ star} $,即使$ \ phi $是$ \ phi $强烈凸。在本文中,我们提出了一项廉价的预处理,该预处理恢复了过度参数化的情况下梯度下降回到线性的收敛速率,同时也使在全局最小化器$ x^{\ star} $中可能不良条件变得不可知。
translated by 谷歌翻译
Is it possible for a first-order method, i.e., only first derivatives allowed, to be quadratically convergent? For univariate loss functions, the answer is yes -- the Steffensen method avoids second derivatives and is still quadratically convergent like Newton method. By incorporating an optimal step size we can even push its convergence order beyond quadratic to $1+\sqrt{2} \approx 2.414$. While such high convergence orders are a pointless overkill for a deterministic algorithm, they become rewarding when the algorithm is randomized for problems of massive sizes, as randomization invariably compromises convergence speed. We will introduce two adaptive learning rates inspired by the Steffensen method, intended for use in a stochastic optimization setting and requires no hyperparameter tuning aside from batch size. Extensive experiments show that they compare favorably with several existing first-order methods. When restricted to a quadratic objective, our stochastic Steffensen methods reduce to randomized Kaczmarz method -- note that this is not true for SGD or SLBFGS -- and thus we may also view our methods as a generalization of randomized Kaczmarz to arbitrary objectives.
translated by 谷歌翻译
在本文中,我们提出了SC-REG(自助正规化)来学习过共同的前馈神经网络来学习\ EMPH {牛顿递减}框架的二阶信息进行凸起问题。我们提出了具有自助正规化(得分-GGN)算法的广义高斯 - 牛顿,其每次接收到新输入批处理时都会更新网络参数。所提出的算法利用Hessian矩阵中的二阶信息的结构,从而减少训练计算开销。虽然我们的目前的分析仅考虑凸面的情况,但数值实验表明了我们在凸和非凸面设置下的方法和快速收敛的效率,这对基线一阶方法和准牛顿方法进行了比较。
translated by 谷歌翻译
我们提供了新的基于梯度的方法,以便有效解决广泛的病态化优化问题。我们考虑最小化函数$ f:\ mathbb {r} ^ d \ lightarrow \ mathbb {r} $的问题,它是隐含的可分解的,作为$ m $未知的非交互方式的总和,强烈的凸起功能并提供方法这解决了这个问题,这些问题是缩放(最快的对数因子)作为组件的条件数量的平方根的乘积。这种复杂性绑定(我们证明几乎是最佳的)可以几乎指出的是加速梯度方法的几乎是指数的,这将作为$ F $的条件数量的平方根。此外,我们提供了求解该多尺度优化问题的随机异标变体的有效方法。而不是学习$ F $的分解(这将是过度昂贵的),而是我们的方法应用一个清洁递归“大步小步”交错标准方法。由此产生的算法使用$ \ tilde {\ mathcal {o}}(d m)$空间,在数字上稳定,并打开门以更细粒度的了解凸优化超出条件号的复杂性。
translated by 谷歌翻译
预处理一直是优化和机器学习方面的主食技术。它通常会减少其应用于矩阵的条件数,从而加快优化算法的收敛性。尽管实践中有许多流行的预处理技术,但大多数人缺乏降低病数的理论保证。在本文中,我们研究了最佳对角线预处理的问题,以分别或同时分别或同时缩放其行或列来实现任何全级矩阵的条件数量的最大降低。我们首先将问题重新将问题重新制定为一个准凸出问题,并提供了一种基线一分配算法,该算法在实践中易于实现,其中每次迭代都包含SDP可行性问题。然后,我们建议使用$ o(\ log(\ frac {1} {\ epsilon})))$迭代复杂度提出多项式时间潜在的降低算法,其中每个迭代均由基于Nesterov-todd方向的牛顿更新组成。我们的算法基于该问题的表述,该问题是von Neumann最佳生长问题的广义版本。接下来,我们专注于单方面的最佳对角线预处理问题,并证明它们可以作为标准双SDP问题配方,我们应用了有效的定制求解器并研究我们最佳的对角线预处理的经验性能。我们在大型矩阵上进行的广泛实验表明,与基于启发式的预处理相比,最佳对角线预处理在减少条件数方面的实际吸引力。
translated by 谷歌翻译
最近开发的优化方法的平均案例分析可以比通常的最坏情况结果进行更细粒度和代表性的收敛分析。作为交换,该分析需要对数据生成过程的更精确的假设,即假定与问题相关的随机矩阵的预期光谱分布(ESD)的知识。这项工作表明,ESD边缘附近的特征值的浓度决定了问题的渐近平均复杂性。与ESD的完整知识相比,有关此浓度的先验信息是一个更扎实的假设。这种近似浓度实际上是最严重的场景收敛的粗糙性与限制性的先前平均案例分析之间的中间立场。我们还引入了广义的Chebyshev方法,该方法在该浓度的假设下渐近最佳,当ESD遵循β分布时,全球最佳。我们将其性能与经典优化算法(例如梯度下降或Nesterov的方案)进行了比较,我们表明,在平均情况下,Nesterov的方法在渐近差异上几乎是最佳的。
translated by 谷歌翻译