我们介绍了Limes,这是一种通过非平稳流数据学习的新方法,灵感来自元学习的最新成功。主要想法不是尝试学习一个单个分类器,该分类器必须在所有发生的数据分布中都能很好地工作,也不是许多单独的分类器,而是要利用混合策略:我们学习一组模型参数任何特定的数据分布都是通过分类器适应得出的。假设有一个具有类优点偏移的多类分类设置,则可以在分析中进行适应步骤,仅在分类器的偏差术语中受到影响。我们工作的另一个贡献是外推步骤,该步骤可以根据先前的数据预测未来时间步骤的合适适应参数。结合起来,我们获得了一个轻巧的过程,可以从具有不同的类分布的流数据中学习,与训练单个模型相比,没有增加可训练的参数,几乎没有内存或计算开销。使用Twitter数据对一组示例性任务进行的实验表明,Limes的精度比替代方法更高,尤其是在最低的当今精度的相关现实世界中。
translated by 谷歌翻译
Concept drift primarily refers to an online supervised learning scenario when the relation between the input data and the target variable changes over time. Assuming a general knowledge of supervised learning in this paper we characterize adaptive learning process, categorize existing strategies for handling concept drift, overview the most representative, distinct and popular techniques and algorithms, discuss evaluation methodology of adaptive algorithms, and present a set of illustrative applications. The survey covers the different facets of concept drift in an integrated way to reflect on the existing scattered state-of-the-art. Thus, it aims at providing a comprehensive introduction to the concept drift adaptation for researchers, industry analysts and practitioners.
translated by 谷歌翻译
A major open problem on the road to artificial intelligence is the development of incrementally learning systems that learn about more and more concepts over time from a stream of data. In this work, we introduce a new training strategy, iCaRL, that allows learning in such a classincremental way: only the training data for a small number of classes has to be present at the same time and new classes can be added progressively.iCaRL learns strong classifiers and a data representation simultaneously. This distinguishes it from earlier works that were fundamentally limited to fixed data representations and therefore incompatible with deep learning architectures. We show by experiments on CIFAR-100 and ImageNet ILSVRC 2012 data that iCaRL can learn many classes incrementally over a long period of time where other strategies quickly fail.
translated by 谷歌翻译
The literature on machine learning in the context of data streams is vast and growing. However, many of the defining assumptions regarding data-stream learning tasks are too strong to hold in practice, or are even contradictory such that they cannot be met in the contexts of supervised learning. Algorithms are chosen and designed based on criteria which are often not clearly stated, for problem settings not clearly defined, tested in unrealistic settings, and/or in isolation from related approaches in the wider literature. This puts into question the potential for real-world impact of many approaches conceived in such contexts, and risks propagating a misguided research focus. We propose to tackle these issues by reformulating the fundamental definitions and settings of supervised data-stream learning with regard to contemporary considerations of concept drift and temporal dependence; and we take a fresh look at what constitutes a supervised data-stream learning task, and a reconsideration of algorithms that may be applied to tackle such tasks. Through and in reflection of this formulation and overview, helped by an informal survey of industrial players dealing with real-world data streams, we provide recommendations. Our main emphasis is that learning from data streams does not impose a single-pass or online-learning approach, or any particular learning regime; and any constraints on memory and time are not specific to streaming. Meanwhile, there exist established techniques for dealing with temporal dependence and concept drift, in other areas of the literature. For the data streams community, we thus encourage a shift in research focus, from dealing with often-artificial constraints and assumptions on the learning mode, to issues such as robustness, privacy, and interpretability which are increasingly relevant to learning in data streams in academic and industrial settings.
translated by 谷歌翻译
恶意软件(恶意软件)分类为持续学习(CL)制度提供了独特的挑战,这是由于每天收到的新样本的数量以及恶意软件的发展以利用新漏洞。在典型的一天中,防病毒供应商将获得数十万个独特的软件,包括恶意和良性,并且在恶意软件分类器的一生中,有超过十亿个样品很容易积累。鉴于问题的规模,使用持续学习技术的顺序培训可以在减少培训和存储开销方面提供可观的好处。但是,迄今为止,还没有对CL应用于恶意软件分类任务的探索。在本文中,我们研究了11种应用于三个恶意软件任务的CL技术,涵盖了常见的增量学习方案,包括任务,类和域增量学习(IL)。具体而言,使用两个现实的大规模恶意软件数据集,我们评估了CL方法在二进制恶意软件分类(domain-il)和多类恶意软件家庭分类(Task-IL和类IL)任务上的性能。令我们惊讶的是,在几乎所有情况下,持续的学习方法显着不足以使训练数据的幼稚关节重播 - 在某些情况下,将精度降低了70个百分点以上。与关节重播相比,有选择性重播20%的存储数据的一种简单方法可以实现更好的性能,占训练时间的50%。最后,我们讨论了CL技术表现出乎意料差的潜在原因,希望它激发进一步研究在恶意软件分类域中更有效的技术。
translated by 谷歌翻译
大多数机器学习算法的基本假设是培训和测试数据是从相同的底层分布中汲取的。然而,在几乎所有实际应用中违反了这种假设:由于不断变化的时间相关,非典型最终用户或其他因素,机器学习系统经常测试。在这项工作中,我们考虑域泛化的问题设置,其中训练数据被构造成域,并且可能有多个测试时间偏移,对应于新域或域分布。大多数事先方法旨在学习在所有域上执行良好的单一强大模型或不变的功能空间。相比之下,我们的目标是使用未标记的测试点学习适应域转移到域移的模型。我们的主要贡献是介绍自适应风险最小化(ARM)的框架,其中模型被直接优化,以便通过学习来转移以适应培训域来改编。与稳健性,不变性和适应性的先前方法相比,ARM方法提供了在表现域移位的多个图像分类问题上的性能增益为1-4%的测试精度。
translated by 谷歌翻译
学习在线推荐模型的关键挑战之一是时间域移动,这会导致培训与测试数据分布之间的不匹配以及域的概括错误。为了克服,我们建议学习一个未来的梯度生成器,该生成器可以预测培训未来数据分配的梯度信息,以便可以对建议模型进行培训,就像我们能够展望其部署的未来一样。与批处理更新相比,我们的理论表明,所提出的算法达到了较小的时间域概括误差,该误差通过梯度变异项在局部遗憾中衡量。我们通过与各种代表性基线进行比较来证明经验优势。
translated by 谷歌翻译
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern (1) a taxonomy and extensive overview of the state-of-the-art; (2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner; (3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time and storage.
translated by 谷歌翻译
在几个真实的世界应用中,部署机器学习模型以使数据对分布逐渐变化的数据进行预测,导致火车和测试分布之间的漂移。这些模型通常会定期在新数据上重新培训,因此他们需要概括到未来的数据。在这种情况下,有很多关于提高时间概括的事先工作,例如,过去数据的连续运输,内核平滑时间敏感参数,最近,越来越多的时间不变的功能。但是,这些方法共享了几个限制,例如可扩展性差,培训不稳定,以及未来未标记数据的依赖性。响应上述限制,我们提出了一种简单的方法,该方法以时间敏感的参数开头,但使用梯度插值(GI)丢失来规则地规则化其时间复杂度。 GI允许决策边界沿着时间改变,并且仍然可以通过允许特定于时间的改变来防止对有限训练时间快照的过度接种。我们将我们的方法与多个实际数据集的现有基线进行比较,这表明GI一方面优于更加复杂的生成和对抗方法,另一方面更简单地梯度正则化方法。
translated by 谷歌翻译
在许多真实的场景中,我们经常处理随着时间的推移顺序收集的流数据。由于环境的非静止性,流数据分布可能以不可预测的方式改变,这被称为概念漂移。为了处理概念漂移,先前的方法首先检测概念漂移的时间何时/其中,然后适应模型以适应最新数据的分布。然而,仍然存在许多情况下,环境进化的一些潜在因素是可预测的,使得可以模拟流数据的未来概念漂移趋势,而在以前的工作中没有完全探索这种情况。在本文中,我们提出了一种新型方法DDG-DA,可以有效地预测数据分布的演变并提高模型的性能。具体而言,我们首先训练预测器来估计未来的数据分布,然后利用它来生成训练样本,最后在生成的数据上培训模型。我们对三个现实世界任务进行实验(预测股票价格走势,电力负荷和太阳辐照度),并获得多种广泛使用的模型的显着改进。
translated by 谷歌翻译
Graph learning is a popular approach for performing machine learning on graph-structured data. It has revolutionized the machine learning ability to model graph data to address downstream tasks. Its application is wide due to the availability of graph data ranging from all types of networks to information systems. Most graph learning methods assume that the graph is static and its complete structure is known during training. This limits their applicability since they cannot be applied to problems where the underlying graph grows over time and/or new tasks emerge incrementally. Such applications require a lifelong learning approach that can learn the graph continuously and accommodate new information whilst retaining previously learned knowledge. Lifelong learning methods that enable continuous learning in regular domains like images and text cannot be directly applied to continuously evolving graph data, due to its irregular structure. As a result, graph lifelong learning is gaining attention from the research community. This survey paper provides a comprehensive overview of recent advancements in graph lifelong learning, including the categorization of existing methods, and the discussions of potential applications and open research problems.
translated by 谷歌翻译
近年来,随着传感器和智能设备的广泛传播,物联网(IoT)系统的数据生成速度已大大增加。在物联网系统中,必须经常处理,转换和分析大量数据,以实现各种物联网服务和功能。机器学习(ML)方法已显示出其物联网数据分析的能力。但是,将ML模型应用于物联网数据分析任务仍然面临许多困难和挑战,特别是有效的模型选择,设计/调整和更新,这给经验丰富的数据科学家带来了巨大的需求。此外,物联网数据的动态性质可能引入概念漂移问题,从而导致模型性能降解。为了减少人类的努力,自动化机器学习(AUTOML)已成为一个流行的领域,旨在自动选择,构建,调整和更新机器学习模型,以在指定任务上实现最佳性能。在本文中,我们对Automl区域中模型选择,调整和更新过程中的现有方法进行了审查,以识别和总结将ML算法应用于IoT数据分析的每个步骤的最佳解决方案。为了证明我们的发现并帮助工业用户和研究人员更好地实施汽车方法,在这项工作中提出了将汽车应用于IoT异常检测问题的案例研究。最后,我们讨论并分类了该领域的挑战和研究方向。
translated by 谷歌翻译
数十年来,计算机系统持有大量个人数据。一方面,这种数据丰度允许在人工智能(AI),尤其是机器学习(ML)模型中突破。另一方面,它可能威胁用户的隐私并削弱人类与人工智能之间的信任。最近的法规要求,可以从一般情况下从计算机系统中删除有关用户的私人信息,特别是根据要求从ML模型中删除(例如,“被遗忘的权利”)。虽然从后端数据库中删除数据应该很简单,但在AI上下文中,它不够,因为ML模型经常“记住”旧数据。现有的对抗攻击证明,我们可以从训练有素的模型中学习私人会员或培训数据的属性。这种现象要求采用新的范式,即机器学习,以使ML模型忘记了特定的数据。事实证明,由于缺乏共同的框架和资源,最近在机器上学习的工作无法完全解决问题。在本调查文件中,我们试图在其定义,场景,机制和应用中对机器进行彻底的研究。具体而言,作为最先进的研究的类别集合,我们希望为那些寻求机器未学习的入门及其各种表述,设计要求,删除请求,算法和用途的人提供广泛的参考。 ML申请。此外,我们希望概述范式中的关键发现和趋势,并突出显示尚未看到机器无法使用的新研究领域,但仍可以受益匪浅。我们希望这项调查为ML研究人员以及寻求创新隐私技术的研究人员提供宝贵的参考。我们的资源是在https://github.com/tamlhp/awesome-machine-unlearning上。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
挖掘数据流姿势存在许多挑战,包括数据的连续和非静止性质,待处理的大量信息和限制计算资源。虽然在文献中提出了一些针对这个问题的监督解决方案,但大多数人都假定访问地面真理(以类标签的形式)是无限的,并且在更新学习系统时可以立即使用此类信息。这远非现实,因为必须考虑获取标签的基本成本。因此,需要解决流方案中实际真相要求的解决方案。在本文中,通过组合来自主动学习和自我标签的信息,提出了一种用于预算的挖水数据流的新框架。我们介绍了几种策略,可以利用智能实例选择和半监督程序,同时考虑到概念漂移的潜在存在。这种混合方法允许有效的探索和利用在现实标记预算中的流数据结构。由于我们的框架工作为包装器,因此它可以应用于不同的学习算法。实验研究,在具有各种类型的概念漂移的多样化现实数据流中进行的实验研究,证明了在处理对类标签的高度限制时拟议的策略的有用性。当一个人不能增加标签或更换低效分类器的预算时,呈现的混合方法尤其可行。我们为我们的战略提供了一套关于适用性领域的建议。
translated by 谷歌翻译
在多标签学习中,单个数据点与多个目标标签相关联的多任务学习的特定情况,在文献中广泛假定,为了获得最佳准确性,应明确建模标签之间的依赖性。这个前提导致提供的方法的扩散,以学习和预测标签,例如,一个标签的预测会影响对其他标签的预测。即使现在人们承认,在许多情况下,最佳性能并不需要一种依赖模型,但此类模型在某些情况下继续超越独立模型,这暗示了其对其性能的替代解释以外的标签依赖性,而文献仅是文献才是最近开始解开。利用并扩展了最近的发现,我们将多标签学习的原始前提转移到其头上,并在任务标签之间没有任何可衡量的依赖性的情况下特别处理联合模型的问题;例如,当任务标签来自单独的问题域时。我们将洞察力从这项研究转移到建立转移学习方法,该方法挑战了长期以来的假设,即任务的可转移性来自源和目标域或模型之间相似性的测量。这使我们能够设计和测试一种传输学习方法,该方法是模型驱动的,而不是纯粹的数据驱动,并且它是黑匣子和模型不合时式(可以考虑任何基本模型类)。我们表明,从本质上讲,我们可以根据源模型容量创建任务依赖性。我们获得的结果具有重要的含义,并在多标签和转移学习领域为将来的工作提供了明确的方向。
translated by 谷歌翻译
Continual Learning (CL) is a field dedicated to devise algorithms able to achieve lifelong learning. Overcoming the knowledge disruption of previously acquired concepts, a drawback affecting deep learning models and that goes by the name of catastrophic forgetting, is a hard challenge. Currently, deep learning methods can attain impressive results when the data modeled does not undergo a considerable distributional shift in subsequent learning sessions, but whenever we expose such systems to this incremental setting, performance drop very quickly. Overcoming this limitation is fundamental as it would allow us to build truly intelligent systems showing stability and plasticity. Secondly, it would allow us to overcome the onerous limitation of retraining these architectures from scratch with the new updated data. In this thesis, we tackle the problem from multiple directions. In a first study, we show that in rehearsal-based techniques (systems that use memory buffer), the quantity of data stored in the rehearsal buffer is a more important factor over the quality of the data. Secondly, we propose one of the early works of incremental learning on ViTs architectures, comparing functional, weight and attention regularization approaches and propose effective novel a novel asymmetric loss. At the end we conclude with a study on pretraining and how it affects the performance in Continual Learning, raising some questions about the effective progression of the field. We then conclude with some future directions and closing remarks.
translated by 谷歌翻译
Automated Machine Learning (AutoML) has been used successfully in settings where the learning task is assumed to be static. In many real-world scenarios, however, the data distribution will evolve over time, and it is yet to be shown whether AutoML techniques can effectively design online pipelines in dynamic environments. This study aims to automate pipeline design for online learning while continuously adapting to data drift. For this purpose, we design an adaptive Online Automated Machine Learning (OAML) system, searching the complete pipeline configuration space of online learners, including preprocessing algorithms and ensembling techniques. This system combines the inherent adaptation capabilities of online learners with the fast automated pipeline (re)optimization capabilities of AutoML. Focusing on optimization techniques that can adapt to evolving objectives, we evaluate asynchronous genetic programming and asynchronous successive halving to optimize these pipelines continually. We experiment on real and artificial data streams with varying types of concept drift to test the performance and adaptation capabilities of the proposed system. The results confirm the utility of OAML over popular online learning algorithms and underscore the benefits of continuous pipeline redesign in the presence of data drift.
translated by 谷歌翻译
流数据分类的重要问题之一是概念漂移的发生,包括分类任务的概率特征的变化。这种现象不稳定了分类模型的性能,并严重降低了其质量。需要抵消这种现象的适当策略来使分类器适应变化的概率特征。实现此类解决方案的一个重要问题是访问数据标签。它通常是昂贵的,从而最大限度地减少与该过程相关的费用,提出了基于半监督学习的学习策略,例如,采用主动学习方法,该方法指示哪些传入对象是有价值的,以便标记为提高分类器的性能。本文提出了一种基于基于分类器集合学习的非静止数据流的基于块的方法,以及考虑可以成功应用于任何数据流分类算法的有限预算的主动学习策略。已经通过使用真实和生成的数据流进行了计算机实验来评估所提出的方法。结果证实了最先进的方法的高质量。
translated by 谷歌翻译
在清晨预测交通动态时,传统交通预测方法的有效性通常非常有限。原因是在清晨通勤期间交通可能会彻底分解,这个分解的时间和持续时间大幅度从日常生活中变化。清晨的交通预测是通知午餐的交通管理至关重要,但他们通常会提前预测,特别是在午夜预测。在本文中,我们建议将Twitter消息作为探测方法,了解在前一天晚上/午夜的人们工作和休息模式的影响到下一天的早晨交通。该模型在匹兹堡的高速公路网络上进行了测试,作为实验。由此产生的关系令人惊讶地简单且强大。我们发现,一般来说,早些时候的人休息如推文所示,即第二天早上就越拥挤的道路就越多。之前的大事发生了大事,由更高或更低的Tweet情绪表示,比正常,通常意味着在第二天早上的旅行需求较低。此外,人们在前一天晚上和清晨的鸣叫活动与早晨高峰时段的拥堵有统计学相关。我们利用这种关系来构建一个预测框架,预测早晨的通勤充血使用5时或早晨午夜提取的人的推特型材。匹兹堡研究支持我们的框架可以精确预测早晨拥塞,特别是对于具有大型日常充血变异的道路瓶颈上游的一些道路段。我们的方法在没有Twitter消息功能的情况下大大差异,可以从提供管理洞察力的推文配置文件中学习有意义的需求表示。
translated by 谷歌翻译