Research connecting text and images has recently seen several breakthroughs, with models like CLIP, DALL-E 2, and Stable Diffusion. However, the connection between text and other visual modalities, such as lidar data, has received less attention, prohibited by the lack of text-lidar datasets. In this work, we propose LidarCLIP, a mapping from automotive point clouds to a pre-existing CLIP embedding space. Using image-lidar pairs, we supervise a point cloud encoder with the image CLIP embeddings, effectively relating text and lidar data with the image domain as an intermediary. We show the effectiveness of LidarCLIP by demonstrating that lidar-based retrieval is generally on par with image-based retrieval, but with complementary strengths and weaknesses. By combining image and lidar features, we improve upon both single-modality methods and enable a targeted search for challenging detection scenarios under adverse sensor conditions. We also use LidarCLIP as a tool to investigate fundamental lidar capabilities through natural language. Finally, we leverage our compatibility with CLIP to explore a range of applications, such as point cloud captioning and lidar-to-image generation, without any additional training. We hope LidarCLIP can inspire future work to dive deeper into connections between text and point cloud understanding. Code and trained models available at https://github.com/atonderski/lidarclip.
translated by 谷歌翻译
Traditional 3D scene understanding approaches rely on labeled 3D datasets to train a model for a single task with supervision. We propose OpenScene, an alternative approach where a model predicts dense features for 3D scene points that are co-embedded with text and image pixels in CLIP feature space. This zero-shot approach enables task-agnostic training and open-vocabulary queries. For example, to perform SOTA zero-shot 3D semantic segmentation it first infers CLIP features for every 3D point and later classifies them based on similarities to embeddings of arbitrary class labels. More interestingly, it enables a suite of open-vocabulary scene understanding applications that have never been done before. For example, it allows a user to enter an arbitrary text query and then see a heat map indicating which parts of a scene match. Our approach is effective at identifying objects, materials, affordances, activities, and room types in complex 3D scenes, all using a single model trained without any labeled 3D data.
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
我们介绍了自回归文本到图像(Parti)模型的途径,该模型生成高保真的影像图像并支持涉及复杂组成和世界知识的内容丰富的合成。 Parti将文本对图像生成视为类似于机器翻译的序列到序列建模问题,图像令牌的序列是目标输出,而不是其他语言的文本令牌。这种策略自然可以利用大型语言模型的先前工作,通过扩展数据和模型尺寸,能力和性能的持续进展。我们的方法很简单:首先,Parti使用基于变压器的图像令牌VIT-VQGAN将图像编码为离散令牌的序列。其次,我们通过将编码器二次变压器模型缩放到20B参数来实现一致的质量改进,其新的最新零弹药FID得分为7.23,而MS-Coco的FIDED得分为3.22。我们对本地化叙述以及党的详细分析(P2),这是1600多个英语提示的新的整体基准,证明了Parti在各种类别和难度方面的有效性。我们还探索并突出了我们的模型的局限性,以定义和体现关注重点领域以进一步改进。有关高分辨率图像,请参见https://parti.research.google/。
translated by 谷歌翻译
人工智能(AI)的基本目标是模仿人类的核心认知活动。尽管在AI研究中取得了巨大的成功,但大多数现有方法仅具有单认知能力。为了克服这一局限性并迈出了朝着人工通用智能(AGI)迈出的坚实一步,我们开发了一个通过庞大的多模式数据进行预训练的基础模型,可以快速适应各种下游认知任务。为了实现这一目标,我们建议通过从Internet上拖延的语义相关数据进行自我监督的学习来预先培训我们的基础模型,并表明可以在各种下游任务上获得有希望的结果。特别是,使用开发的模型解剖工具,我们证明了我们的基础模型现在拥有强大的想象力。我们认为,我们的工作从我们的“弱或狭窄AI”的常见实践到“强或广泛的AI”迈出了转变的迈向AGI。
translated by 谷歌翻译
我们将神经渲染与多模态图像和文本表示相结合,以仅从自然语言描述中综合不同的3D对象。我们的方法,梦场,可以产生多种物体的几何和颜色而无需3D监控。由于不同,标题3D数据的稀缺性,先前的方法仅生成来自少数类别的对象,例如ShapEnet。相反,我们指导生成与从Web的标题图像的大型数据集预先培训的图像文本模型。我们的方法优化了许多相机视图的神经辐射场,使得根据预先训练的剪辑模型,渲染图像非常高度地使用目标字幕。为了提高保真度和视觉质量,我们引入简单的几何前瞻,包括突出透射率正则化,场景界限和新的MLP架构。在实验中,梦场从各种自然语言标题中产生现实,多视图一致的物体几何和颜色。
translated by 谷歌翻译
Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether this makes it possible to learn those skills from text data and then use them to complete vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study a variety of strategies to mitigate this concern. We produce models using only text training data on three tasks: image captioning, visual entailment and visual question answering, and evaluate them on standard benchmarks using images. We find that this kind of transfer is possible and results in only a small drop in performance relative to models trained on images. We also showcase a variety of stylistic image captioning models that were trained using no image data and no human-curated language data, but instead text data from books, the web, or language models.
translated by 谷歌翻译
本文提出了一种对比调整,这是一种简单的方法,采用对比训练来对准图像和文本模型,同时仍然利用他们的预训练。在我们的实证研究中,我们发现,锁定的预训练图像模型与解锁文本模型最佳。我们调用这种对比调整“锁定图像文本调整”(LIT TOONING)的实例,该实例仅教导文本模型,从预先训练的图像模型中读出了良好的表示新任务。亮度调谐模型将零拍摄传输到新视觉任务的能力提高,例如图像分类或检索。建议的亮度调整是广泛适用的;它可以使用三种不同的图像文本数据集可靠地使用多种预训练方法(监督和无监督)和多种架构(Reset,Vision变换器和MLP-MILLER)。利用基于变压器的预训练VIT-G / 14型号,LIT调谐模型在想象网测试集中实现了84.5%的零射频传输精度,并且在充满挑战的分发ObjectNet测试集中实现了81.1%。
translated by 谷歌翻译
We present X-Decoder, a generalized decoding model that can predict pixel-level segmentation and language tokens seamlessly. X-Decodert takes as input two types of queries: (i) generic non-semantic queries and (ii) semantic queries induced from text inputs, to decode different pixel-level and token-level outputs in the same semantic space. With such a novel design, X-Decoder is the first work that provides a unified way to support all types of image segmentation and a variety of vision-language (VL) tasks. Further, our design enables seamless interactions across tasks at different granularities and brings mutual benefits by learning a common and rich pixel-level visual-semantic understanding space, without any pseudo-labeling. After pretraining on a mixed set of a limited amount of segmentation data and millions of image-text pairs, X-Decoder exhibits strong transferability to a wide range of downstream tasks in both zero-shot and finetuning settings. Notably, it achieves (1) state-of-the-art results on open-vocabulary segmentation and referring segmentation on eight datasets; (2) better or competitive finetuned performance to other generalist and specialist models on segmentation and VL tasks; and (3) flexibility for efficient finetuning and novel task composition (e.g., referring captioning and image editing). Code, demo, video, and visualization are available at https://x-decoder-vl.github.io.
translated by 谷歌翻译
我们研究开放世界3D场景的理解,这是一个要求代理商的一系列任务,以开放式词汇和外域视觉输入来推理其3D环境,这是机器人在非结构化的3D世界中操作的关键技能。为此,我们提出了语义抽象(SEMABS),该框架将2D视觉模型(VLMS)具有新的3D空间功能,同时保持其零击的稳健性。我们使用从剪辑中提取的相关图实现了这种抽象,并以语义不平衡的方式学习了这些抽象的3D空间和几何推理技能。我们演示了SEMABS对两个开放世界3D场景的有用性理解任务:1)完成部分观察到的对象,2)从语言描述中定位隐藏的对象。实验表明,SEMABS可以从有限的3D合成数据进行训练中概括为新颖的词汇,材料/照明,类和域(即现实世界扫描)。代码和数据将在https://semantic-abstraction.cs.columbia.edu/上找到。
translated by 谷歌翻译
The understanding capabilities of current state-of-the-art 3D models are limited by datasets with a small number of annotated data and a pre-defined set of categories. In its 2D counterpart, recent advances have shown that similar problems can be significantly alleviated by employing knowledge from other modalities, such as language. Inspired by this, leveraging multimodal information for 3D modality could be promising to improve 3D understanding under the restricted data regime, but this line of research is not well studied. Therefore, we introduce ULIP to learn a unified representation of image, text, and 3D point cloud by pre-training with object triplets from the three modalities. To overcome the shortage of training triplets, ULIP leverages a pre-trained vision-language model that has already learned a common visual and textual space by training with massive image-text pairs. Then, ULIP learns a 3D representation space aligned with the common image-text space, using a small number of automatically synthesized triplets. ULIP is agnostic to 3D backbone networks and can easily be integrated into any 3D architecture. Experiments show that ULIP effectively improves the performance of multiple recent 3D backbones by simply pre-training them on ShapeNet55 using our framework, achieving state-of-the-art performance in both standard 3D classification and zero-shot 3D classification on ModelNet40 and ScanObjectNN. ULIP also improves the performance of PointMLP by around 3% in 3D classification on ScanObjectNN, and outperforms PointCLIP by 28.8% on top-1 accuracy for zero-shot 3D classification on ModelNet40. Our code and pre-trained models will be released.
translated by 谷歌翻译
We introduce Patch Aligned Contrastive Learning (PACL), a modified compatibility function for CLIP's contrastive loss, intending to train an alignment between the patch tokens of the vision encoder and the CLS token of the text encoder. With such an alignment, a model can identify regions of an image corresponding to a given text input, and therefore transfer seamlessly to the task of open vocabulary semantic segmentation without requiring any segmentation annotations during training. Using pre-trained CLIP encoders with PACL, we are able to set the state-of-the-art on the task of open vocabulary zero-shot segmentation on 4 different segmentation benchmarks: Pascal VOC, Pascal Context, COCO Stuff and ADE20K. Furthermore, we show that PACL is also applicable to image-level predictions and when used with a CLIP backbone, provides a general improvement in zero-shot classification accuracy compared to CLIP, across a suite of 12 image classification datasets.
translated by 谷歌翻译
Generalizable 3D part segmentation is important but challenging in vision and robotics. Training deep models via conventional supervised methods requires large-scale 3D datasets with fine-grained part annotations, which are costly to collect. This paper explores an alternative way for low-shot part segmentation of 3D point clouds by leveraging a pretrained image-language model, GLIP, which achieves superior performance on open-vocabulary 2D detection. We transfer the rich knowledge from 2D to 3D through GLIP-based part detection on point cloud rendering and a novel 2D-to-3D label lifting algorithm. We also utilize multi-view 3D priors and few-shot prompt tuning to boost performance significantly. Extensive evaluation on PartNet and PartNet-Mobility datasets shows that our method enables excellent zero-shot 3D part segmentation. Our few-shot version not only outperforms existing few-shot approaches by a large margin but also achieves highly competitive results compared to the fully supervised counterpart. Furthermore, we demonstrate that our method can be directly applied to iPhone-scanned point clouds without significant domain gaps.
translated by 谷歌翻译
通用视觉(GPV)系统是旨在解决各种视觉任务的模型,而无需进行架构更改。如今,GPV主要从大型完全监督的数据集中学习技能和概念。通过获取数据以迅速学习每个技能的每个概念,将GPV扩展到数万个概念都变得令人望而却步。这项工作提出了一种有效且廉价的替代方法:从监督数据集中学习技能,从Web图像搜索中学习概念,并利用GPV的关键特征:跨技能传递视觉知识的能力。我们使用跨越10K+视觉概念的1M+图像的数据集来演示3个基准上的两个现有GPV(GPV-1和VL-T5)的Webly Supumented概念扩展:5个基于可可的数据集(80个主要概念),这是一个新的策划系列,这是一个新的策划系列。基于OpenImages和VisualGenome存储库(〜500个概念)以及Web衍生的数据集(10K+概念)的5个数据集。我们还提出了一种新的体系结构GPV-2,该架构支持各种任务 - 从分类和本地化等视觉任务到Qu Viewer+语言任务,例如QA和字幕,再到更多的利基市场,例如人类对象互动检测。 GPV-2从Web数据中受益匪浅,并且在这些基准测试中胜过GPV-1和VL-T5。我们的数据,代码和Web演示可在https://prior.allenai.org/projects/gpv2上获得。
translated by 谷歌翻译
Astounding results from Transformer models on natural language tasks have intrigued the vision community to study their application to computer vision problems. Among their salient benefits, Transformers enable modeling long dependencies between input sequence elements and support parallel processing of sequence as compared to recurrent networks e.g., Long short-term memory (LSTM). Different from convolutional networks, Transformers require minimal inductive biases for their design and are naturally suited as set-functions. Furthermore, the straightforward design of Transformers allows processing multiple modalities (e.g., images, videos, text and speech) using similar processing blocks and demonstrates excellent scalability to very large capacity networks and huge datasets. These strengths have led to exciting progress on a number of vision tasks using Transformer networks. This survey aims to provide a comprehensive overview of the Transformer models in the computer vision discipline. We start with an introduction to fundamental concepts behind the success of Transformers i.e., self-attention, large-scale pre-training, and bidirectional feature encoding. We then cover extensive applications of transformers in vision including popular recognition tasks (e.g., image classification, object detection, action recognition, and segmentation), generative modeling, multi-modal tasks (e.g., visual-question answering, visual reasoning, and visual grounding), video processing (e.g., activity recognition, video forecasting), low-level vision (e.g., image super-resolution, image enhancement, and colorization) and 3D analysis (e.g., point cloud classification and segmentation). We compare the respective advantages and limitations of popular techniques both in terms of architectural design and their experimental value. Finally, we provide an analysis on open research directions and possible future works. We hope this effort will ignite further interest in the community to solve current challenges towards the application of transformer models in computer vision.
translated by 谷歌翻译
最近的文本到图像匹配模型对大型图像和句子的大公司进行了对比学习。虽然这些模型可以提供用于匹配和随后的零拍任务的强大分数,但它们不能给出给定图像的标题。在这项工作中,我们重新利用这些模型来生成在推理时间的图像时生成描述性文本,而无需进一步的训练或调整步骤。这是通过将具有大语言模型的视觉语义模型组合,从两种网络级模型中的知识中获益。由受监督标题方法获得的标题的限制性较小。此外,作为零射击学习方法,它非常灵活,我们展示了执行图像算法的能力,其中输入可以是图像或文本,输出是句子。这使得新颖的高级视觉能力,例如比较两个图像或解决视觉类比测试。
translated by 谷歌翻译
我们解决了用草图和文本查询检索图像的问题。我们提出任务形成器(文本和草图变压器),这是一种可使用文本说明和草图作为输入的端到端训练模型。我们认为,两种输入方式都以一种单独的方式无法轻易实现的方式相互补充。任务形成器遵循延迟融合双编码方法,类似于剪辑,该方法允许有效且可扩展的检索,因为检索集可以独立于查询而独立于索引。我们从经验上证明,与传统的基于文本的图像检索相比,除文本外,使用输入草图(甚至是绘制的草图)大大增加了检索召回。为了评估我们的方法,我们在可可数据集的测试集中收集了5,000个手绘草图。收集的草图可获得https://janesjanes.github.io/tsbir/。
translated by 谷歌翻译
利用深度学习的最新进展,文本到图像生成模型目前具有吸引公众关注的优点。其中两个模型Dall-E 2和Imagen已经证明,可以从图像的简单文本描述中生成高度逼真的图像。基于一种称为扩散模型的新型图像生成方法,文本对图像模型可以生产许多不同类型的高分辨率图像,其中人类想象力是唯一的极限。但是,这些模型需要大量的计算资源来训练,并处理从互联网收集的大量数据集。此外,代码库和模型均未发布。因此,它可以防止AI社区尝试这些尖端模型,从而使其结果复制变得复杂,即使不是不可能。在本文中,我们的目标是首先回顾这些模型使用的不同方法和技术,然后提出我们自己的文本模型模型实施。高度基于DALL-E 2,我们引入了一些轻微的修改,以应对所引起的高计算成本。因此,我们有机会进行实验,以了解这些模型的能力,尤其是在低资源制度中。特别是,我们提供了比Dall-e 2的作者(包括消融研究)更深入的分析。此外,扩散模型使用所谓的指导方法来帮助生成过程。我们引入了一种新的指导方法,该方法可以与其他指导方法一起使用,以提高图像质量。最后,我们的模型产生的图像质量相当好,而不必维持最先进的文本对图像模型的重大培训成本。
translated by 谷歌翻译
While recent work on text-conditional 3D object generation has shown promising results, the state-of-the-art methods typically require multiple GPU-hours to produce a single sample. This is in stark contrast to state-of-the-art generative image models, which produce samples in a number of seconds or minutes. In this paper, we explore an alternative method for 3D object generation which produces 3D models in only 1-2 minutes on a single GPU. Our method first generates a single synthetic view using a text-to-image diffusion model, and then produces a 3D point cloud using a second diffusion model which conditions on the generated image. While our method still falls short of the state-of-the-art in terms of sample quality, it is one to two orders of magnitude faster to sample from, offering a practical trade-off for some use cases. We release our pre-trained point cloud diffusion models, as well as evaluation code and models, at https://github.com/openai/point-e.
translated by 谷歌翻译
当标签稀缺时,域的适应性是使学习能够学习的重要任务。尽管大多数作品仅着眼于图像模式,但有许多重要的多模式数据集。为了利用多模式的域适应性,我们提出了跨模式学习,在这种学习中,我们通过相互模仿在两种模式的预测之间执行一致性。我们限制了我们的网络,以对未标记的目标域数据进行正确预测,并在标记的数据和跨模式的一致预测中进行预测。在无监督和半监督的域适应设置中进行的实验证明了这种新型域适应策略的有效性。具体而言,我们评估了从2D图像,3D点云或两者都从3D语义分割的任务进行评估。我们利用最近的驾驶数据集生产各种域名适应场景,包括场景布局,照明,传感器设置和天气以及合成到现实的设置的变化。我们的方法在所有适应方案上都显着改善了以前的单模式适应基线。我们的代码可在https://github.com/valeoai/xmuda_journal上公开获取
translated by 谷歌翻译