深度学习的最新发展之一是广义的零射击学习(GZSL),旨在识别所见类和看不见的类别的对象,而仅提供了来自可见类的标记示例。在过去的几年中,GZSL抓住了牵引力,并提出了几种模型来解决这个问题。尽管在计算机视觉和自然语言处理等领域进行了大量有关GZSL的研究,但尚未进行此类研究来处理时间序列数据。 GZSL用于应用程序,例如检测ECG和EEG数据的异常,并从传感器,光谱仪和其他设备数据中识别出看不见的类。在这方面,我们提出了一个时间序列-GZSL(LETS -GZSL)模型的潜在嵌入方式,该模型可以解决GZSL的问题用于时间序列分类(TSC)。我们利用基于嵌入式的方法并将其与属性向量相结合以预测最终类标签。我们报告了广泛流行的UCR档案数据集的结果。我们的框架能够在大多数数据集上实现至少55%的谐波平均值,除非看不见的类的数量大于3,否则数据量非常低(小于100个培训示例)。
translated by 谷歌翻译
广义零射击学习(GZSL)旨在培训一个模型,以在某些输出类别在监督学习过程中未知的情况下对数据样本进行分类。为了解决这一具有挑战性的任务,GZSL利用可见的(源)和看不见的(目标)类的语义信息来弥合所见类和看不见的类之间的差距。自引入以来,已经制定了许多GZSL模型。在这篇评论论文中,我们介绍了有关GZSL的全面评论。首先,我们提供了GZSL的概述,包括问题和挑战。然后,我们为GZSL方法介绍了分层分类,并讨论了每个类别中的代表性方法。此外,我们讨论了GZSL的可用基准数据集和应用程序,以及有关研究差距和未来研究方向的讨论。
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
与其2D图像对应物相比,3D点云数据上的零射击学习是一个相关的未置换问题。 3D数据由于不可用的预训练特征提取模型而带来了ZSL的新挑战。为了解决这个问题,我们提出了一种及时引导的3D场景生成和监督方法,该方法可以增强3D数据以更好地学习网络,从而探索可见和看不见的对象的复杂相互作用。首先,我们以提示描述的某些方式合并了两个3D模型的点云。提示的行为就像描述每个3D场景的注释一样。后来,我们进行对比学习,以端到端的方式培训我们所提出的建筑。我们认为,与单​​个对象相比,3D场景可以更有效地关联对象,因为当对象出现在上下文中时,流行的语言模型(如Bert)可以实现高性能。我们提出的及时引导场景生成方法封装了数据扩展和基于及时的注释/字幕,以提高3D ZSL性能。我们已经在合成(ModelNet40,ModelNet10)和实扫描(ScanoJbectnn)3D对象数据集上实现了最新的ZSL和广义ZSL性能。
translated by 谷歌翻译
我们提出了一种结合时间序列表示学习的专家知识的方法。我们的方法采用专家功能来代替以前的对比学习方法中常用的数据转换。我们这样做是因为时间序列数据经常源于工业或医疗领域,这些工业或医学领域通常可以从域专家那里获得专家功能,而转换通常难以捉摸,对于时间序列数据。我们首先提出了有用的时间序列表示应实现的两个属性,并表明当前的表示学习方法不能确保这些属性。因此,我们设计了Expclr,这是一种基于目标的目标,它利用专家功能来鼓励两种属性来实现学习的代表。最后,我们在三个现实世界中的数据集上演示了ExpCLR超过了无监督和半监督的表示学习的几种最新方法。
translated by 谷歌翻译
零拍摄对象检测(ZSD),将传统检测模型扩展到检测来自Unseen类别的对象的任务,已成为计算机视觉中的新挑战。大多数现有方法通过严格的映射传输策略来解决ZSD任务,这可能导致次优ZSD结果:1)这些模型的学习过程忽略了可用的看不见的类信息,因此可以轻松地偏向所看到的类别; 2)原始视觉特征空间并不合适,缺乏歧视信息。为解决这些问题,我们开发了一种用于ZSD的新型语义引导的对比网络,命名为Contrastzsd,一种检测框架首先将对比学习机制带入零拍摄检测的领域。特别地,对比度包括两个语义导向的对比学学习子网,其分别与区域类别和区域区域对之间形成对比。成对对比度任务利用从地面真理标签和预定义的类相似性分布派生的附加监督信号。在那些明确的语义监督的指导下,模型可以了解更多关于看不见的类别的知识,以避免看到概念的偏见问题,同时优化视觉功能的数据结构,以更好地辨别更好的视觉语义对齐。广泛的实验是在ZSD,即Pascal VOC和MS Coco的两个流行基准上进行的。结果表明,我们的方法优于ZSD和广义ZSD任务的先前最先进的。
translated by 谷歌翻译
零拍摄学习(ZSL)旨在将知识从看见课程转移到语义相关的看不见的看不见的类,这在训练期间不存在。 ZSL的有希望的策略是在语义侧信息中综合未经调节的视野类的视觉特征,并结合元学习,以消除模型对所看到的课程的固有偏差。虽然现有的元生成方法追求跨任务分布的共同模型,但我们的目标是构建适应任务特征的生成网络。为此,我们提出了一个属性调制的生成元模型,用于零射击学习(Amaz)。我们的模型包括属性感知调制网络,属性增强生成网络和属性加权分类器。给定看不见的类,调制网络通过应用特定任务的变换自适应地调制发电机,使得生成网络可以适应高度多样化的任务。加权分类器利用数据质量来增强培训过程,进一步提高模型性能。我们对四种广泛使用的基准测试的实证评估表明,Amaz优先效仿最先进的方法在ZSL和广义ZSL设置中,展示了我们方法的优越性。我们对零拍摄图像检索任务的实验表明了Amaz的合成描绘真实视觉特征的情况的能力。
translated by 谷歌翻译
从一个非常少数标记的样品中学习新颖的课程引起了机器学习区域的越来越高。最近关于基于元学习或转移学习的基于范例的研究表明,良好特征空间的获取信息可以是在几次拍摄任务上实现有利性能的有效解决方案。在本文中,我们提出了一种简单但有效的范式,该范式解耦了学习特征表示和分类器的任务,并且只能通过典型的传送学习培训策略从基类嵌入体系结构的特征。为了在每个类别内保持跨基地和新类别和辨别能力的泛化能力,我们提出了一种双路径特征学习方案,其有效地结合了与对比特征结构的结构相似性。以这种方式,内部级别对齐和级别的均匀性可以很好地平衡,并且导致性能提高。三个流行基准测试的实验表明,当与简单的基于原型的分类器结合起来时,我们的方法仍然可以在电感或转换推理设置中的标准和广义的几次射击问题达到有希望的结果。
translated by 谷歌翻译
Annotating words in a historical document image archive for word image recognition purpose demands time and skilled human resource (like historians, paleographers). In a real-life scenario, obtaining sample images for all possible words is also not feasible. However, Zero-shot learning methods could aptly be used to recognize unseen/out-of-lexicon words in such historical document images. Based on previous state-of-the-art method for zero-shot word recognition Pho(SC)Net, we propose a hybrid model based on the CTC framework (Pho(SC)-CTC) that takes advantage of the rich features learned by Pho(SC)Net followed by a connectionist temporal classification (CTC) framework to perform the final classification. Encouraging results were obtained on two publicly available historical document datasets and one synthetic handwritten dataset, which justifies the efficacy of Pho(SC)-CTC and Pho(SC)Net.
translated by 谷歌翻译
零射击动作识别是识别无视觉示例的识别性类别的任务,只有在没有看到看到的类别的seman-tic嵌入方式。问题可以看作是学习一个函数,该函数可以很好地讲述不见的阶级实例,而不会在类之间失去歧视。神经网络可以模拟视觉类别之间的复杂边界,从而将其作为监督模型的成功范围。但是,这些高度专业化的类边界可能不会从看不见的班级转移到看不见的类别。在本文中,我们提出了基于质心的表示,该表示将视觉和语义表示,同时考虑所有训练样本,通过这种方式,对看不见的课程的实例很好。我们使用强化学习对群集进行优化,这对我们的工作方法表明了至关重要的。我们称提出的甲壳类动物的命名为Claster,并观察到它在所有标准数据集中始终超过最先进的方法,包括UCF101,HMDB51和奥运会运动;在Thestandard Zero-shot评估和广义零射击学习中。此外,我们表明我们的模型在图像域也可以进行com的性能,在许多设置中表现出色。
translated by 谷歌翻译
专注于歧视性零射击学习,在这项工作中,我们介绍了一种新的机制,在培训一组课程期间动态增强以产生额外的虚构课程。这些虚构的类在培训集中出现的属性相关性期间对模型进行固定的模型的趋势减少,但不会出现在新公开的课程中。所提出的模型在零射击学习框架的两种配方中进行测试;即,广义零射击学习(GZSL)和古典零射击学习(CZSL)。我们的模型可以提高CUB数据集的最先进的性能,并在其他常见数据集,AWA2和Sun上达到可比结果。我们调查我们方法的优点和弱点,包括在训练端到端零拍模型时灾难性忘记的影响。
translated by 谷歌翻译
在许多现实世界的医学图像分类设置中,我们无法访问所有可能的疾病类别的样本,而强大的系统有望在识别新型测试数据方面具有高性能。我们提出了一种通用的零射击学习(GZSL)方法,该方法使用自我监督学习(SSL)用于:1)选择不同疾病类别的锚定向量;2)训练功能生成器。我们的方法不需要类属性向量,这些向量可用于自然图像,但不适合医学图像。SSL确保锚向量代表每个类别。SSL还用于生成看不见类的合成特征。使用更简单的架构,我们的方法与基于SSL的最先进的GZSL方法匹配自然图像,并优于医学图像的所有方法。我们的方法足够适应于自然图像时可容纳类属性向量。
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译
广义的零射击学习(GZSL)旨在通过将语义知识从看见的类别转移到看不见的阶级来识别所见类和看不见的类别的图像。这是一个有希望的解决方案,可以利用生成模型的优势,以根据从所见类中学到的知识来幻觉现实的看不见的样本。但是,由于产生的变化,大多数现有方法的合成样本可能从看不见的数据的实际分布中偏离。为了解决这个问题,我们提出了一个基于流动的生成框架,该框架由多种条件仿射耦合层组成,用于学习看不见的数据生成。具体而言,我们发现并解决了触发产生转移的三个潜在问题,即语义不一致,方差崩溃和结构障碍。首先,为了增强生成样品中语义信息的反射,我们将语义信息明确嵌入到每个条件仿射耦合层中的转换中。其次,为了恢复真正看不见的特征的固有差异,我们引入了一种边界样本挖掘策略,具有熵最大化,以发现语义原型的更困难的视觉变体,并在此调整分类器的决策边界。第三,提出了一种相对定位策略来修改属性嵌入,引导它们充分保留类间的几何结构,并进一步避免语义空间中的结构障碍。四个GZSL基准数据集的广泛实验结果表明,GSMFlow在GZSL上实现了最先进的性能。
translated by 谷歌翻译
机器学习模型通常会遇到与训练分布不同的样本。无法识别分布(OOD)样本,因此将该样本分配给课堂标签会显着损害模​​型的可靠性。由于其对在开放世界中的安全部署模型的重要性,该问题引起了重大关注。由于对所有可能的未知分布进行建模的棘手性,检测OOD样品是具有挑战性的。迄今为止,一些研究领域解决了检测陌生样本的问题,包括异常检测,新颖性检测,一级学习,开放式识别识别和分布外检测。尽管有相似和共同的概念,但分别分布,开放式检测和异常检测已被独立研究。因此,这些研究途径尚未交叉授粉,创造了研究障碍。尽管某些调查打算概述这些方法,但它们似乎仅关注特定领域,而无需检查不同领域之间的关系。这项调查旨在在确定其共同点的同时,对各个领域的众多著名作品进行跨域和全面的审查。研究人员可以从不同领域的研究进展概述中受益,并协同发展未来的方法。此外,据我们所知,虽然进行异常检测或单级学习进行了调查,但没有关于分布外检测的全面或最新的调查,我们的调查可广泛涵盖。最后,有了统一的跨域视角,我们讨论并阐明了未来的研究线,打算将这些领域更加紧密地融为一体。
translated by 谷歌翻译
组成零射击学习(CZSL)旨在使用从训练集中的属性对象组成中学到的知识来识别新的构图。先前的作品主要将图像和组合物投影到共同的嵌入空间中,以衡量其兼容性得分。但是,属性和对象都共享上面学到的视觉表示,导致模型利用虚假的相关性和对可见对的偏见。取而代之的是,我们重新考虑CZSL作为分布的概括问题。如果将对象视为域,我们可以学习对象不变的功能,以识别任何对象附加的属性。同样,当识别具有属性为域的对象时,还可以学习属性不变的功能。具体而言,我们提出了一个不变的特征学习框架,以在表示和梯度级别上对齐不同的域,以捕获与任务相关的内在特征。对两个CZSL基准测试的实验表明,所提出的方法显着优于先前的最新方法。
translated by 谷歌翻译
很少有图像分类是一个具有挑战性的问题,旨在仅基于少量培训图像来达到人类的识别水平。少数图像分类的一种主要解决方案是深度度量学习。这些方法是,通过将看不见的样本根据距离的距离进行分类,可在强大的深神经网络中学到的嵌入空间中看到的样品,可以避免以少数图像分类的少数训练图像过度拟合,并实现了最新的图像表现。在本文中,我们提供了对深度度量学习方法的最新审查,以进行2018年至2022年的少量图像分类,并根据度量学习的三个阶段将它们分为三组,即学习功能嵌入,学习课堂表示和学习距离措施。通过这种分类法,我们确定了他们面临的不同方法和问题的新颖性。我们通过讨论当前的挑战和未来趋势进行了少量图像分类的讨论。
translated by 谷歌翻译
Wearable sensor-based human activity recognition (HAR) has emerged as a principal research area and is utilized in a variety of applications. Recently, deep learning-based methods have achieved significant improvement in the HAR field with the development of human-computer interaction applications. However, they are limited to operating in a local neighborhood in the process of a standard convolution neural network, and correlations between different sensors on body positions are ignored. In addition, they still face significant challenging problems with performance degradation due to large gaps in the distribution of training and test data, and behavioral differences between subjects. In this work, we propose a novel Transformer-based Adversarial learning framework for human activity recognition using wearable sensors via Self-KnowledgE Distillation (TASKED), that accounts for individual sensor orientations and spatial and temporal features. The proposed method is capable of learning cross-domain embedding feature representations from multiple subjects datasets using adversarial learning and the maximum mean discrepancy (MMD) regularization to align the data distribution over multiple domains. In the proposed method, we adopt the teacher-free self-knowledge distillation to improve the stability of the training procedure and the performance of human activity recognition. Experimental results show that TASKED not only outperforms state-of-the-art methods on the four real-world public HAR datasets (alone or combined) but also improves the subject generalization effectively.
translated by 谷歌翻译
我们提出了一种新的广义零射算法,以识别来自手势的感知情绪。我们的任务是将手势映射到培训中未遇到的新颖情感类别。我们介绍了一个对抗的基于AutoEncoder的表示学习,将3D运动捕获的手势序列与使用Word2Vec嵌入的自然语言感知情绪术语的矢量化表示相关联。语言 - 语义嵌入提供了情感标签空间的表示,我们利用这种底层分布将手势序列映射到适当的分类情绪标签。我们使用具有已知情绪术语的手势组合培训我们的方法,并且没有用任何情绪注释的手势。我们在MPI情绪体表达式数据库(EBEDB)上评估我们的方法,并获得58.43 \%$的准确性。这提高了当前最先进的算法的性能,以便在绝对的25美元 - 27 \%$ 27 \%$ 27 \%。
translated by 谷歌翻译
学习时间序列表示只有未标记的数据或几个标签样本可用时,可能是一项具有挑战性的任务。最近,通过对比,通过对比的不同数据观点从未标记的数据中提取有用的表示形式方面,对对比的自我监督学习表现出了很大的改进。在这项工作中,我们通过时间和上下文对比(TS-TCC)提出了一个新颖的时间序列表示学习框架,该框架从未标记的数据中学习了具有对比性学习的无标记数据的表示。具体而言,我们建议时间序列特定的弱和强大的增强,并利用他们的观点在拟议的时间对比模块中学习稳健的时间关系,除了通过我们提出的上下文对比模块学习判别性表示。此外,我们对时间序列数据增强选择进行系统研究,这是对比度学习的关键部分。我们还将TS-TCC扩展到了半监督的学习设置,并提出了一种类感知的TS-TCC(CA-TCC),从可用的少数标​​记数据中受益,以进一步改善TS-TCC学到的表示。具体而言,我们利用TS-TCC生成的强大伪标签来实现班级感知的对比损失。广泛的实验表明,对我们提议的框架所学的功能的线性评估与完全监督的培训相当。此外,我们的框架在少数标记的数据和转移学习方案中显示出高效率。该代码可在\ url {https://github.com/emadeldeen24/ts-tcc}上公开获得。
translated by 谷歌翻译