随着机器学习(ML)模型越来越多地用于做出结果决定,人们对开发可以为受影响个人提供求助的技术越来越兴趣。这些技术中的大多数提供了追索权,假设受影响的个体将实施规定的recourses \ emph {prirent}。但是,由于各种原因,要求将薪水提高\ $ 500的人可能会获得嘈杂和不一致的方式实施,这可能会获得晋升,而增加了505美元。在此激励的情况下,我们研究了面对嘈杂的人类反应时追索性无效的问题。更具体地说,我们从理论上和经验上分析了最新算法的行为,并证明这些算法产生的记录很可能是无效的(即,如果对它们做出的小变化,则可能导致负面结果) 。我们进一步提出了一个新颖的框架,期望嘈杂的响应(\ texttt {Expect}),该框架通过在嘈杂的响应中明确最大程度地减少追索性无效的可能性来解决上述问题。我们的框架可以确保最多$ r \%$的最多$ r $作为最终用户请求追索权的输入。通过这样做,我们的框架为最终用户提供了更大的控制权,可以在追索性成本和稳定性之间的稳定性之间进行权衡。具有多个现实世界数据集的实验评估证明了所提出的框架的功效,并验证了我们的理论发现。
translated by 谷歌翻译
随着机器学习(ML)模型越来越多地被部署在高风险应用程序中,决策者提出了更严格的数据保护法规(例如GDPR,CCPA)。一个关键原则是``被遗忘的权利'',它使用户有权删除其数据。另一个关键原则是实现可操作的解释的权利,也称为算法追索权,使用户可以逆转不利的决定。迄今为止,尚不清楚这两个原则是否可以同时进行操作。因此,我们在数据删除请求的背景下介绍和研究追索权无效的问题。更具体地说,我们从理论上和经验上分析流行的最先进算法的行为,并证明如果这些算法产生的记录可能会无效,如果少数数据删除请求(例如1或2)保证书(例如1或2)预测模型的更新。对于线性模型和过度参数化的神经网络的设置 - 通过神经切线内核(NTK)进行了研究 - 我们建议一个框架来识别最小的关键训练点的最小值,当删除时,它将导致最大程度地提高其最大程度的分数。无效的回流。使用我们的框架,我们从经验上确定,从训练集中删除2个数据实例可以使流行的最先进算法最多无效所有回报的95%。因此,我们的工作提出了有关``被遗忘的权利''的背景下``可行解释权''的兼容性的基本问题。
translated by 谷歌翻译
The goal of algorithmic recourse is to reverse unfavorable decisions (e.g., from loan denial to approval) under automated decision making by suggesting actionable feature changes (e.g., reduce the number of credit cards). To generate low-cost recourse the majority of methods work under the assumption that the features are independently manipulable (IMF). To address the feature dependency issue the recourse problem is usually studied through the causal recourse paradigm. However, it is well known that strong assumptions, as encoded in causal models and structural equations, hinder the applicability of these methods in complex domains where causal dependency structures are ambiguous. In this work, we develop \texttt{DEAR} (DisEntangling Algorithmic Recourse), a novel and practical recourse framework that bridges the gap between the IMF and the strong causal assumptions. \texttt{DEAR} generates recourses by disentangling the latent representation of co-varying features from a subset of promising recourse features to capture the main practical recourse desiderata. Our experiments on real-world data corroborate our theoretically motivated recourse model and highlight our framework's ability to provide reliable, low-cost recourse in the presence of feature dependencies.
translated by 谷歌翻译
As predictive models are increasingly being employed to make consequential decisions, there is a growing emphasis on developing techniques that can provide algorithmic recourse to affected individuals. While such recourses can be immensely beneficial to affected individuals, potential adversaries could also exploit these recourses to compromise privacy. In this work, we make the first attempt at investigating if and how an adversary can leverage recourses to infer private information about the underlying model's training data. To this end, we propose a series of novel membership inference attacks which leverage algorithmic recourse. More specifically, we extend the prior literature on membership inference attacks to the recourse setting by leveraging the distances between data instances and their corresponding counterfactuals output by state-of-the-art recourse methods. Extensive experimentation with real world and synthetic datasets demonstrates significant privacy leakage through recourses. Our work establishes unintended privacy leakage as an important risk in the widespread adoption of recourse methods.
translated by 谷歌翻译
由于算法决策对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。反事实解释可以帮助用户不仅可以理解为什么ML模型做出某些决定,还可以改变这些决定。我们框架以梯度为基础的优化任务查找反事实解释的问题,并扩展了只能应用于可微分模型的先前工作。为了适应非微弱的模型,例如树集合,我们在优化框架中使用概率模型近似。我们介绍了一种近似技术,可以有效地查找原始模型的预测的反事实解释,并表明我们的反事实示例明显更接近原始实例,而不是由专门为树集合设计的其他方法产生的实例。
translated by 谷歌翻译
Post-hoc explanations of machine learning models are crucial for people to understand and act on algorithmic predictions. An intriguing class of explanations is through counterfactuals, hypothetical examples that show people how to obtain a different prediction. We posit that effective counterfactual explanations should satisfy two properties: feasibility of the counterfactual actions given user context and constraints, and diversity among the counterfactuals presented. To this end, we propose a framework for generating and evaluating a diverse set of counterfactual explanations based on determinantal point processes. To evaluate the actionability of counterfactuals, we provide metrics that enable comparison of counterfactual-based methods to other local explanation methods. We further address necessary tradeoffs and point to causal implications in optimizing for counterfactuals. Our experiments on four real-world datasets show that our framework can generate a set of counterfactuals that are diverse and well approximate local decision boundaries, outperforming prior approaches to generating diverse counterfactuals. We provide an implementation of the framework at https://github.com/microsoft/DiCE. CCS CONCEPTS• Applied computing → Law, social and behavioral sciences.
translated by 谷歌翻译
由于算法预测对人类的影响增加,模型解释性已成为机器学习(ML)的重要问题。解释不仅可以帮助用户了解为什么ML模型做出某些预测,还可以帮助用户了解这些预测如何更改。在本论文中,我们研究了从三个有利位置的ML模型的解释性:算法,用户和教学法,并为解释性问题贡献了一些新颖的解决方案。
translated by 谷歌翻译
There exist several methods that aim to address the crucial task of understanding the behaviour of AI/ML models. Arguably, the most popular among them are local explanations that focus on investigating model behaviour for individual instances. Several methods have been proposed for local analysis, but relatively lesser effort has gone into understanding if the explanations are robust and accurately reflect the behaviour of underlying models. In this work, we present a survey of the works that analysed the robustness of two classes of local explanations (feature importance and counterfactual explanations) that are popularly used in analysing AI/ML models in finance. The survey aims to unify existing definitions of robustness, introduces a taxonomy to classify different robustness approaches, and discusses some interesting results. Finally, the survey introduces some pointers about extending current robustness analysis approaches so as to identify reliable explainability methods.
translated by 谷歌翻译
算法追求要求为个人提供可操作的建议,以克服自动化决策系统所做的不利结果。求助建议理想地应对个人寻求追索权的特征具有相当小的不确定性。在这项工作中,我们制定了逆势稳健的追索问题,并表明追索方法提供最低售价的追索权无力。然后,我们提出用于在线性和可分辨率案例中产生对抗性稳健追索的方法。为了确保追索权是强劲的,要求个人努力,而不是否则的努力。为了将部分从决策者从决策者转移到决策者的稳健性负担,我们提出了一种模型规范器,鼓励寻求强大追索权的额外成本。我们展示了使用我们提出的模型规范器训练的分类器,依赖于无法解除的预测功能,提供可能更少努力的追索权。
translated by 谷歌翻译
识别受机器学习模型决策影响的人算法追索的问题最近受到了很多关注。一些最近的作品模型用户产生的成本,直接与用户满意相关联。但他们假设在所有用户共享的单一全局成本函数。当用户对其对其愿意行动的愿意和与改变该功能相关的不同成本具有相似的偏好时,这是一个不切实际的假设。在这项工作中,我们正式化了用户特定成本函数的概念,并引入了一种用于用户识别可操作的辅助的新方法。默认情况下,我们假设用户的成本函数是从追索方法隐藏的,尽管我们的框架允许用户部分或完全指定其偏好或成本函数。我们提出了一个客观函数,预期的最低成本(EMC),基于两个关键的想法:(1)在向用户呈现一组选项时,用户可以采用至少一个低成本解决方案至关重要; (2)当我们不了解用户的真实成本函数时,我们可以通过首先采样合理的成本函数来满足用户满意度,然后找到一个达到用户在期望中的良好成本的集合。我们以新颖的离散优化算法优化EMC,成本优化的本地搜索(COL),保证可以在迭代中提高追索性质量​​。具有模拟用户成本的流行实际数据集的实验评估表明,与强基线方法相比,我们的方法多达25.89个百分点。使用标准公平度量,我们还表明,我们的方法可以在人口统计组中提供比较可比方法的更公平的解决方案,我们验证了我们的方法是否稳健地击败成本函数分布。
translated by 谷歌翻译
反事实解释是作为一种有吸引力的选择,以便向算法决策提供不利影响的个人的诉讼选择。由于它们在关键应用中部署(例如,执法,财务贷款),确保我们清楚地了解这些方法的漏洞并找到解决这些方法的漏洞是重要的。但是,对反事实解释的脆弱性和缺点几乎没有了解。在这项工作中,我们介绍了第一个框架,它描述了反事解释的漏洞,并显示了如何操纵它们。更具体地,我们显示反事实解释可能会聚到众所周知的不同反应性,指示它们不稳健。利用这种洞察力,我们介绍了一部小说目标来培训看似公平的模特,反事实解释在轻微的扰动下发现了更低的成本追索。我们描述了这些模型如何在对审计师出现公平的情况下为数据中的特定子组提供低成本追索。我们对贷款和暴力犯罪预测数据集进行实验,其中某些子组在扰动下达到高达20倍的成本追索性。这些结果提高了关于当前反事实解释技术的可靠性的担忧,我们希望在强大的反事实解释中激发调查。
translated by 谷歌翻译
In the last years many accurate decision support systems have been constructed as black boxes, that is as systems that hide their internal logic to the user. This lack of explanation constitutes both a practical and an ethical issue. The literature reports many approaches aimed at overcoming this crucial weakness sometimes at the cost of scarifying accuracy for interpretability. The applications in which black box decision systems can be used are various, and each approach is typically developed to provide a solution for a specific problem and, as a consequence, delineating explicitly or implicitly its own definition of interpretability and explanation. The aim of this paper is to provide a classification of the main problems addressed in the literature with respect to the notion of explanation and the type of black box system. Given a problem definition, a black box type, and a desired explanation this survey should help the researcher to find the proposals more useful for his own work. The proposed classification of approaches to open black box models should also be useful for putting the many research open questions in perspective.
translated by 谷歌翻译
尽管在最近的文献中提出了几种类型的事后解释方法(例如,特征归因方法),但在系统地以有效且透明的方式进行系统基准测试这些方法几乎没有工作。在这里,我们介绍了OpenXai,这是一个全面且可扩展的开源框架,用于评估和基准测试事后解释方法。 OpenXAI由以下关键组件组成:(i)灵活的合成数据生成器以及各种现实世界数据集,预训练的模型和最新功能属性方法的集合,(ii)开源实现22个定量指标,用于评估忠诚,稳定性(稳健性)和解释方法的公平性,以及(iii)有史以来第一个公共XAI XAI排行榜对基准解释。 OpenXAI很容易扩展,因为用户可以轻松地评估自定义说明方法并将其纳入我们的排行榜。总体而言,OpenXAI提供了一种自动化的端到端管道,该管道不仅简化并标准化了事后解释方法的评估,而且还促进了基准这些方法的透明度和可重复性。 OpenXAI数据集和数据加载程序,最先进的解释方法的实现和评估指标以及排行榜,可在https://open-xai.github.io/上公开获得。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
这项研究通过对三种不同类型的模型进行基准评估来调查机器学习模型对产生反事实解释的影响:决策树(完全透明,可解释的,白色盒子模型),随机森林(一种半解释,灰色盒模型)和神经网络(完全不透明的黑盒模型)。我们在五个不同数据集(Compas,成人,德国,德语,糖尿病和乳腺癌)中使用四种算法(DICE,WatchERCF,原型和GrowingSpheresCF)测试了反事实生成过程。我们的发现表明:(1)不同的机器学习模型对反事实解释的产生没有影响; (2)基于接近性损失函数的唯一算法是不可行的,不会提供有意义的解释; (3)在不保证反事实生成过程中的合理性的情况下,人们无法获得有意义的评估结果。如果对当前的最新指标进行评估,则不考虑其内部机制中不合理的算法将导致偏见和不可靠的结论; (4)强烈建议对定性分析(以及定量分析),以确保对反事实解释和偏见的潜在识别进行强有力的分析。
translated by 谷歌翻译
Counterfactual Explanations are becoming a de-facto standard in post-hoc interpretable machine learning. For a given classifier and an instance classified in an undesired class, its counterfactual explanation corresponds to small perturbations of that instance that allows changing the classification outcome. This work aims to leverage Counterfactual Explanations to detect the important decision boundaries of a pre-trained black-box model. This information is used to build a supervised discretization of the features in the dataset with a tunable granularity. Using the discretized dataset, a smaller, therefore more interpretable Decision Tree can be trained, which, in addition, enhances the stability and robustness of the baseline Decision Tree. Numerical results on real-world datasets show the effectiveness of the approach in terms of accuracy and sparsity compared to the baseline Decision Tree.
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
反事实解释(CES)是了解如何更改算法的决策的强大手段。研究人员提出了许多CES应该满足的Desiderata实际上有用,例如需要最少的努力来制定或遵守因果模型。我们考虑了提高CES的可用性的另一个方面:对不良扰动的鲁棒性,这可能是由于不幸的情况而自然发生的。由于CES通常会规定干预的稀疏形式(即,仅应更改特征的子集),因此我们研究了针对建议更改的特征和不进行的特征分别解决鲁棒性的效果。我们的定义是可行的,因为它们可以将其作为罚款术语纳入用于发现CES的损失功能。为了实验鲁棒性,我们创建和发布代码,其中五个数据集(通常在公平和可解释的机器学习领域使用)已丰富了特定于功能的注释,这些注释可用于采样有意义的扰动。我们的实验表明,CES通常不健壮,如果发生不良扰动(即使不是最坏的情况),他们规定的干预措施可能需要比预期的要大得多,甚至变得不可能。但是,考虑搜索过程中的鲁棒性,可以很容易地完成,可以系统地发现健壮的CES。强大的CES进行额外的干预,以对比扰动的扰动比非稳定的CES降低得多。我们还发现,鲁棒性更容易实现功能更改,这为选择哪种反事实解释最适合用户提出了重要的考虑点。我们的代码可在以下网址获得:https://github.com/marcovirgolin/robust-counterfactuals。
translated by 谷歌翻译
我们查看模型可解释性的特定方面:模型通常需要限制在大小上才能被认为是可解释的,例如,深度5的决策树比深度50中的一个更容易解释。但是,较小的模型也倾向于高偏见。这表明可解释性和准确性之间的权衡。我们提出了一种模型不可知论技术,以最大程度地减少这种权衡。我们的策略是首先学习甲骨文,这是培训数据上高度准确的概率模型。 Oracle预测的不确定性用于学习培训数据的抽样分布。然后,对使用此分布获得的数据样本进行了可解释的模型,通常会导致精确度明显更高。我们将抽样策略作为优化问题。我们的解决方案1具有以下关键的有利属性:(1)它使用固定数量的七个优化变量,而与数据的维度(2)无关,它是模型不可知的 - 因为可解释的模型和甲骨文都可能属于任意性模型家族(3)它具有模型大小的灵活概念,并且可以容纳向量大小(4)它是一个框架,使其能够从优化领域的进度中受益。我们还提出了以下有趣的观察结果:(a)通常,小型模型大小的最佳训练分布与测试分布不同; (b)即使可解释的模型和甲骨文来自高度截然不同的模型家族,也存在这种效果:我们通过使用封闭的复发单位网络作为甲骨文来提高决策树的序列分类精度,从而在文本分类任务上显示此效果。使用字符n-grams; (c)对于模型,我们的技术可用于确定给定样本量的最佳训练样本。
translated by 谷歌翻译
在过去几十年中,已经提出了各种方法,用于估计回归设置中的预测间隔,包括贝叶斯方法,集合方法,直接间隔估计方法和保形预测方法。重要问题是这些方法的校准:生成的预测间隔应该具有预定义的覆盖水平,而不会过于保守。在这项工作中,我们从概念和实验的角度审查上述四类方法。结果来自各个域的基准数据集突出显示从一个数据集中的性能的大波动。这些观察可能归因于违反某些类别的某些方法所固有的某些假设。我们说明了如何将共形预测用作提供不具有校准步骤的方法的方法的一般校准程序。
translated by 谷歌翻译