准确的重力场模型对于小型身体周围的安全邻近操作至关重要。最先进的技术使用球形谐波或高保真多面体形状模型。遗憾的是,这些技术可以在小体的表面附近变得不准确,或者具有高的计算成本,特别是对于二元或异质的小体。新的基于学习的技术不编码预定义结构并且更通用。为了换取多功能性,基于学习的技术可以在训练数据域中的外部较低。在部署中,航天器轨迹是动态数据的主要来源。因此,培训数据域应包括航天器轨迹,以准确评估学习模型的安全性和鲁棒性。我们开发了一种新的基于学习的重力模型的方法,可直接使用宇宙飞船的过去的轨迹。我们进一步介绍了一种方法来通过比较培训域内和外部的准确性来评估基于学习的技术的安全性和鲁棒性。我们展示了两个基于学习的框架的这种安全性和鲁棒性方法:高斯过程和神经网络。随着所提供的详细分析,我们在用于接近操作时,我们经验证明需要对学习的重力模型的稳健性验证。
translated by 谷歌翻译
映射近场污染物的浓度对于跟踪城市地区意外有毒羽状分散体至关重要。通过求解大部分湍流谱,大型模拟(LES)具有准确表示污染物浓度空间变异性的潜力。找到一种合成大量信息的方法,以提高低保真操作模型的准确性(例如,提供更好的湍流封闭条款)特别有吸引力。这是一个挑战,在多质量环境中,LES的部署成本高昂,以了解羽流和示踪剂分散如何随着各种大气和源参数的变化。为了克服这个问题,我们提出了一个合并正交分解(POD)和高斯过程回归(GPR)的非侵入性降低阶模型,以预测与示踪剂浓度相关的LES现场统计。通过最大的后验(MAP)过程,GPR HyperParameter是通过POD告知的最大后验(MAP)过程来优化组件的。我们在二维案例研究上提供了详细的分析,该案例研究对应于表面安装的障碍物上的湍流大气边界层流。我们表明,障碍物上游的近源浓度异质性需要大量的POD模式才能得到充分捕获。我们还表明,逐组分的优化允许捕获POD模式中的空间尺度范围,尤其是高阶模式中较短的浓度模式。如果学习数据库由至少五十至100个LES快照制成,则可以首先估算所需的预算,以朝着更逼真的大气分散应用程序迈进,因此减少订单模型的预测仍然可以接受。
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
在这项工作中,我们考虑使用应用于四逆床控制的模型预测控制(MPC)导出和加入准确动态模型的问题。 MPC依赖于精确的动态模型来实现所需的闭环性能。然而,在复杂系统中存在不确定性以及他们在其运行的环境中的存在在获得对系统动态的充分准确表示方面构成挑战。在这项工作中,我们利用深度学习工具,基于知识的神经常规方程(KNODE),增强了从第一原理获得的模型。由此产生的混合模型包括来自模拟或现实世界实验数据的标称第一原理模型和神经网络。使用四轮压力机,我们将混合模型用于针对最先进的高斯过程(GP)模型,并表明混合模型提供了Quadrotor动态的更准确的预测,并且能够概括超出训练数据。为了提高闭环性能,混合模型集成到新的MPC框架中,称为KNODE-MPC。结果表明,就轨迹跟踪性能而言,综合框架在物理实验中达到了60.2%的仿真和21%以上。
translated by 谷歌翻译
众所周知,混乱的系统对预测的挑战是挑战,因为它们对时间的敏感性和由于阶梯时间而引起的错误和错误。尽管这种不可预测的行为,但对于许多耗散系统,长期轨迹的统计数据仍受到一套被称为全球吸引子的不变措施的管辖。对于许多问题,即使状态空间是无限的维度,该集合是有限维度的。对于马尔可夫系统,长期轨迹的统计特性由解决方案操作员唯一确定,该解决方案操作员将系统的演变映射到任意正时间增量上。在这项工作中,我们提出了一个机器学习框架,以学习耗散混沌系统的基础解决方案操作员,这表明所得的学习操作员准确地捕获了短期轨迹和长期统计行为。使用此框架,我们能够预测湍流Kolmogorov流动动力学的各种统计数据,雷诺数为5000。
translated by 谷歌翻译
虽然牛顿力学的基本规律得到了很好的理解,但是解释了物理场景仍然需要用合适的方程式制造问题并估计相关参数。为了能够利用人工智能技术在这种物理相关的背景下利用近似能力,研究人员已经手工制作了相关状态,然后使用神经网络来学习使用模拟运行作为训练数据的状态转换。遗憾的是,这种方法不适合建模复杂的现实情景,在手动创作相关的状态空间往往是乏味和挑战性的。在这项工作中,我们研究了神经网络是否可以基于视觉数据隐含地学习现实世界机械过程的物理状态,而在内部建模非均匀环境中,并且在该过程中可以实现长期物理推断。我们为此任务开发了经常性的神经网络架构,并且还以不断变化的方差估计的形式表征了结果的不确定性。我们评估我们的设置,以推断在不同形状和方向的碗上的滚珠球运动,以及仅使用图像作为输入的任意高度场。我们在对预测的准确性和情景复杂性方面,我们报告了对现有的基于图像的方法的显着改进;并报告与我们不同的方法,竞争性能与我们不同,承担进入内部物理状态。
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
我们提出了一种基于数据驱动的优化的预补偿方法,以通过修改参考轨迹而不修改任何内置的低级控制器来改善精度运动阶段的轮廓跟踪性能。精确运动阶段的位置是通过数据驱动模型预测的,线性低保真模型用于通过更改路径速度和加速度轮廓来优化遍历时间,然后使用非线性高效率模型来完善该模型先前找到了时间最佳解决方案。我们通过实验证明,所提出的方法能够同时提高高精度运动阶段的生产率和准确性。鉴于模型的基于数据的性质,提出的方法很容易适应广泛的精确运动系统。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
为了安全操作,机器人必须能够避免在不确定的环境中发生碰撞。现有的不确定性运动计划方法通常会对高斯和障碍几何形状做出保守的假设。尽管视觉感知可以对环境提供更准确的表示,但其用于安全运动计划的使用受到神经网络的固有错误校准的限制以及获得足够数据集的挑战。为了解决这些模仿,我们建议采用经过系统增强数据集训练的深层语义分割网络的合奏,以确保可靠的概率占用信息。为了避免在运动计划中进行保守主义,我们通过基于场景的路径计划方法直接采用了概率感知。速度调度方案被应用于路径上,以确保跟踪不准确的情况。我们证明了系统数据增强与深层合奏结合的有效性以及与最新方法相比的基于方案的计划方法,并在涉及人手的实验中验证了我们的框架。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
我们研究了回归中神经网络(NNS)的模型不确定性的方法。为了隔离模型不确定性的效果,我们专注于稀缺训练数据的无噪声环境。我们介绍了关于任何方法都应满足的模型不确定性的五个重要的逃亡者。但是,我们发现,建立的基准通常无法可靠地捕获其中一些逃避者,即使是贝叶斯理论要求的基准。为了解决这个问题,我们介绍了一种新方法来捕获NNS的模型不确定性,我们称之为基于神经优化的模型不确定性(NOMU)。 NOMU的主要思想是设计一个由两个连接的子NN组成的网络体系结构,一个用于模型预测,一个用于模型不确定性,并使用精心设计的损耗函数进行训练。重要的是,我们的设计执行NOMU满足我们的五个Desiderata。由于其模块化体系结构,NOMU可以为任何给定(先前训练)NN提供模型不确定性,如果访问其培训数据。我们在各种回归任务和无嘈杂的贝叶斯优化(BO)中评估NOMU,并具有昂贵的评估。在回归中,NOMU至少和最先进的方法。在BO中,Nomu甚至胜过所有考虑的基准。
translated by 谷歌翻译
为N($ ^ 4 $ s)+ o $ _呈现和定量测试了一种用于预测来自特定初始状态(状态为分布或STD)的产品状态分布的机器学习(ML)模型。 {2} $(x $ ^ 3 \ sigma _ {\ rm g} ^ { - } $)$ \ lightarrow $ no(x $ ^ 2 \ pi $)+ o($ ^ 3 $ p)反应。用于训练神经网络(NN)的参考数据集由用于$ \ SIM 2000 $初始条件的显式准古典轨迹(QCT)模拟确定的最终状态分布。总体而言,通过根均方平方差价量化的预测精度$(\ SIM 0.003)$和$ r ^ 2 $ $(\ SIM 0.99)$之间的参考QCT和STD模型的预测很高测试集和离网状态特定的初始条件和从反应性状态分布中汲取的初始条件,其特征在于通过平移,旋转和振动温度。与在相同的初始状态分布上评估的更粗糙的粒度分布 - 分布(DTD)模型相比,STD模型表明了在反应物制剂中的状态分辨率的额外益处具有相当的性能。从特定的初始状态开始,还导致更多样化的最终状态分布,需要更具表现力的神经网络与DTD相比。显式QCT模拟之间的直接比较,STD模型和广泛使用的Larsen-Borgnakke(LB)模型表明,STD模型是定量的,而LB模型最适合旋转分布$ P(J')$和失败振动分布$ p(v')$。因此,STD模型可以非常适合模拟非预测高速流,例如,使用直接仿真蒙特卡罗方法。
translated by 谷歌翻译
在2015年和2019年之间,地平线的成员2020年资助的创新培训网络名为“Amva4newphysics”,研究了高能量物理问题的先进多变量分析方法和统计学习工具的定制和应用,并开发了完全新的。其中许多方法已成功地用于提高Cern大型Hadron撞机的地图集和CMS实验所执行的数据分析的敏感性;其他几个人,仍然在测试阶段,承诺进一步提高基本物理参数测量的精确度以及新现象的搜索范围。在本文中,在研究和开发的那些中,最相关的新工具以及对其性能的评估。
translated by 谷歌翻译
$ \ Texit {Fermi} $数据中的银河系中多余(GCE)的两个领先假设是一个未解决的微弱毫秒脉冲条件(MSP)和暗物质(DM)湮灭。这些解释之间的二分法通常通过将它们建模为两个单独的发射组分来反映。然而,诸如MSP的点源(PSS)在超微弱的极限中具有统计变质的泊松发射(正式的位置,预期每个来源平均贡献远低于一个光子),导致可能提出问题的歧义如排放是否是PS样或性质中的泊松人。我们提出了一种概念上的新方法,以统一的方式描述PS和泊松发射,并且刚刚从此获得的结果中获得了对泊松组件的约束。为了实现这种方法,我们利用深度学习技术,围绕基于神经网络的方法,用于直方图回归,其表达量数量的不确定性。我们证明我们的方法对许多困扰先前接近的系统,特别是DM / PS误操作来稳健。在$ \ texit {fermi} $数据中,我们发现由$ \ sim4 \ times 10 ^ {-11} \ \ text {counts} \ {counts} \ text {counts} \ text {counts} \ \ text {cm} ^ { - 2} \ \ text {s} ^ { - 1} $(对应于$ \ sim3 - 4 $每pL期望计数),这需要$ n \ sim \ mathcal {o}( 10 ^ 4)$源来解释整个过剩(中位数价值$ n = \文本{29,300} $横跨天空)。虽然微弱,但这种SCD允许我们获得95%信心的Poissonian比赛的约束$ \ eta_p \ leq 66 \%$。这表明大量的GCE通量是由于PSS 。
translated by 谷歌翻译
我们描述了更改 - 联系机器人操作任务的框架,要求机器人与对象和表面打破触点。这种任务的不连续交互动态使得难以构建和使用单个动力学模型或控制策略,并且接触变化期间动态的高度非线性性质可能对机器人和物体造成损害。我们提出了一种自适应控制框架,使机器人能够逐步学习以预测更改联系人任务中的接触变化,从而了解了碎片连续系统的交互动态,并使用任务空间可变阻抗控制器提供平滑且精确的轨迹跟踪。我们通过实验比较我们框架的表现,以确定所需的代表性控制方法,以确定我们框架的自适应控制和增量学习组件需要在变化 - 联系机器人操纵任务中存在不连续动态的平稳控制。
translated by 谷歌翻译
在本文中,我们证明了储层计算可用于学习浅水方程的动态。特别地,虽然储层计算的大多数先前的应用已经需要对特定轨迹的训练来说,以进一步预测沿着该轨迹的进化,我们展示了储层计算能力,以预测浅水方程的轨迹,初始条件下没有看到的初始条件培训过程。然而,在该设置中,我们发现网络的性能对于具有与训练数据集中的环境条件(例如总水质高度和平均速度)的初始条件恶化。为了避免这种缺陷,我们引入了一种转移学习方法,其中使用相关环境条件的小额额外训练步骤来改善预测。
translated by 谷歌翻译
The geospace environment is volatile and highly driven. Space weather has effects on Earth's magnetosphere that cause a dynamic and enigmatic response in the thermosphere, particularly on the evolution of neutral mass density. Many models exist that use space weather drivers to produce a density response, but these models are typically computationally expensive or inaccurate for certain space weather conditions. In response, this work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM), a physics-based thermosphere model. Our method leverages principal component analysis to reduce the dimensionality of TIE-GCM and recurrent neural networks to model the dynamic behavior of the thermosphere much quicker than the numerical model. The newly developed reduced order probabilistic emulator (ROPE) uses Long-Short Term Memory neural networks to perform time-series forecasting in the reduced state and provide distributions for future density. We show that across the available data, TIE-GCM ROPE has similar error to previous linear approaches while improving storm-time modeling. We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE-GCM ROPE can capture the position resulting from TIE-GCM density with < 5 km bias. Simultaneously, linear approaches provide point estimates that can result in biases of 7 - 18 km.
translated by 谷歌翻译
我们提出了一个机器学习框架,该框架将图像超分辨率技术与级别测量方法中的被动标量传输融为一体。在这里,我们研究是否可以计算直接数据驱动的校正,以最大程度地减少界面的粗晶石演化中的数值粘度。拟议的系统的起点是半拉格朗日配方。并且,为了减少数值耗散,我们引入了一个易于识别的多层感知器。该神经网络的作用是改善数值估计的表面轨迹。为此,它在单个时间范围内处理局部级别集,速度和位置数据,以便在移动前部附近的选择顶点。因此,我们的主要贡献是一种新型的机器学习调音算法,该算法与选择性重新融为一体并与常规对流交替运行,以保持调整后的界面轨迹平滑。因此,我们的程序比基于全卷卷积的应用更有效,因为它仅在自由边界周围集中计算工作。同样,我们通过各种测试表明,我们的策略有效地抵消了数值扩散和质量损失。例如,在简单的对流问题中,我们的方法可以达到与基线方案相同的精度,分辨率是分辨率的两倍,但成本的一小部分。同样,我们的杂种技术可以产生可行的固化前端,以进行结晶过程。另一方面,切向剪切流和高度变形的模拟会导致偏置伪像和推理恶化。同样,严格的设计速度约束可以将我们的求解器的应用限制为涉及快速接口更改的问题。在后一种情况下,我们已经确定了几个机会来增强鲁棒性,而没有放弃我们的方法的基本概念。
translated by 谷歌翻译
监督运营商学习是一种新兴机器学习范例,用于建模时空动态系统的演变和近似功能数据之间的一般黑盒关系的应用。我们提出了一种新颖的操作员学习方法,LOCA(学习操作员耦合注意力),激励了最近的注意机制的成功。在我们的体系结构中,输入函数被映射到有限的一组特征,然后按照依赖于输出查询位置的注意重量平均。通过将这些注意重量与积分变换一起耦合,LOCA能够明确地学习目标输出功能中的相关性,使我们能够近似非线性运算符,即使训练集测量中的输出功能的数量非常小。我们的配方伴随着拟议模型的普遍表现力的严格近似理论保证。经验上,我们在涉及普通和部分微分方程的系统管理的若干操作员学习场景中,评估LOCA的表现,以及黑盒气候预测问题。通过这些场景,我们展示了最先进的准确性,对噪声输入数据的鲁棒性以及在测试数据集上始终如一的错误传播,即使对于分发超出预测任务。
translated by 谷歌翻译