我们为策略梯度强化学习引入了一种约束的优化方法,该方法使用虚拟信任区域来调节每个策略更新。除了将一个单一旧政策作为正常信任区域的邻近性外,我们还建议通过另一个虚拟策略形成第二个信任区域,代表了过去的各种过去的政策。然后,我们执行新政策,以保持更靠近虚拟政策,如果旧政策的运作差,这将是有益的。更重要的是,我们提出了一种机制,可以自动从过去政策的记忆中自动构建虚拟策略,从而为在优化过程中动态学习适当的虚拟信任区域提供了新的能力。我们提出的方法是在不同的环境中进行检查,包括机器人运动控制,带有稀疏奖励和Atari游戏的导航,始终如一地证明了针对最近的上政策限制性策略梯度方法,在各种环境中进行了检查。
translated by 谷歌翻译
我们为政策梯度方法介绍了一种新颖的训练程序,其中用于在飞行中优化强化学习算法的超参数。与其他HyperParameter搜索不同,我们将HyperParameter调度标记为标准的Markov决策过程,并使用epiSodic内存来存储所使用的超参数和培训背景的结果。在任何策略更新步骤中,策略学习者都指的是存储的经验,并自适应地将其学习算法与存储器确定的新的超参数重新配置。这种机制被称为epiSodic政策梯度训练(EPGT),可以联合学习单个运行中的策略和学习算法的封面。连续和离散环境的实验结果证明了利用所提出的方法促进各种政策梯度算法的性能的优点。
translated by 谷歌翻译
通过回顾一封来自情节记忆的过去的经验,可以通过回忆过去的经验来实现钢筋学习的样本效率。我们提出了一种新的基于模型的轨迹的集体记忆,解决了集体控制的当前限制。我们的记忆估计轨迹值,指导代理人朝着良好的政策。基于内存构建,我们通过动态混合控制统一模型的基于动态和习惯学习来构建互补学习模型,进入单个架构。实验表明,我们的模型可以比各种环境中的其他强力加强学习代理更快,更好地学习,包括随机和非马尔可夫环境。
translated by 谷歌翻译
资产分配(或投资组合管理)是确定如何最佳将有限预算的资金分配给一系列金融工具/资产(例如股票)的任务。这项研究调查了使用无模型的深RL代理应用于投资组合管理的增强学习(RL)的性能。我们培训了几个RL代理商的现实股票价格,以学习如何执行资产分配。我们比较了这些RL剂与某些基线剂的性能。我们还比较了RL代理,以了解哪些类别的代理表现更好。从我们的分析中,RL代理可以执行投资组合管理的任务,因为它们的表现明显优于基线代理(随机分配和均匀分配)。四个RL代理(A2C,SAC,PPO和TRPO)总体上优于最佳基线MPT。这显示了RL代理商发现更有利可图的交易策略的能力。此外,基于价值和基于策略的RL代理之间没有显着的性能差异。演员批评者的表现比其他类型的药物更好。同样,在政策代理商方面的表现要好,因为它们在政策评估方面更好,样品效率在投资组合管理中并不是一个重大问题。这项研究表明,RL代理可以大大改善资产分配,因为它们的表现优于强基础。基于我们的分析,在政策上,参与者批评的RL药物显示出最大的希望。
translated by 谷歌翻译
强化学习的主要困难之一是从{\ em dobsolicy}样本中学习,这些样本是由算法评估(目标策略)的不同策略(行为策略)收集的。非政策学习需要从行为政策中纠正样本的分布到目标策略的分布。不幸的是,重要的抽样具有固有的高方差问题,从而导致策略梯度方法的梯度估计差。我们专注于范围的参与者 - 批评体系结构,并提出了一种称为预处理近端政策优化(P3O)的新方法,该方法可以通过将预处理程序应用于保守政策迭代(CPI)目标来控制重要性采样的较高差异。 {\ em此预处理以一种特殊的方式使用Sigmoid函数,即当没有策略更改时,梯度是最大的,因此策略梯度将驱动大参数更新以有效地探索参数空间}。这是一种新颖的探索方法,鉴于现有的探索方法是基于国家和行动的新颖性,尚未对其进行研究。我们与离散和连续任务上的几种表现最好的算法进行了比较,结果表明{\ em ppo不足以实现异位},并且我们的p3O比ppo {\ em off-policy}比ppo比“根据off off ppo”。 - 通过Deon Metric衡量的Policyness,P3O在比PPO更大的政策空间中探索。结果还表明,在训练过程中,我们的P3O比PPO更好地提高了CPI目标。
translated by 谷歌翻译
本文探讨了在深度参与者批评的增强学习模型中同时学习价值功能和政策的问题。我们发现,由于这两个任务之间的噪声水平差异差异,共同学习这些功能的共同实践是亚最佳选择。取而代之的是,我们表明独立学习这些任务,但是由于蒸馏阶段有限,可以显着提高性能。此外,我们发现可以使用较低的\ textIt {方差}返回估计值来降低策略梯度噪声水平。鉴于,值学习噪声水平降低了较低的\ textit {bias}估计值。这些见解共同为近端策略优化的扩展提供了信息,我们称为\ textit {dual Network Archituction}(DNA),这极大地超过了其前身。DNA还超过了受欢迎的彩虹DQN算法在测试的五个环境中的四个环境中的性能,即使在更困难的随机控制设置下也是如此。
translated by 谷歌翻译
由于其令人鼓舞的性能,在各种控制任务中的令人鼓舞的表现,深增强学习(Deep RL)一直在受到更高的关注。然而,在训练神经网络中的常规正则化技术(例如,$ L_2 $正则化,辍学)已经在RL方法中被忽略,可能是因为代理通常在相同的环境中进行培训和评估,因为Deep RL社区重点关注更多-Level算法设计。在这项工作中,我们在连续控制任务中提出了具有多种策略优化算法的正则化技术的第一综合研究。有趣的是,我们发现策略网络上的传统正则化技术通常可以带来大量改进,特别是在更难的任务上。我们的研究结果显示在训练HyperParameter变化方面是强大的。我们还将这些技术与更广泛使用的熵正则化进行了比较。此外,我们还研究正规化不同的组件,并发现策略网络通常是最佳的。我们进一步分析了为什么正则化可能有助于从四个观点来帮助推广 - 样本复杂性,奖励分配,重量规范和噪音鲁棒性。我们希望我们的研究为未来的规则策略优化算法提供指导。我们的代码可在https://github.com/xuanlinli17/ICLRR2021_RLREG上获得。
translated by 谷歌翻译
Model-free deep reinforcement learning (RL) algorithms have been demonstrated on a range of challenging decision making and control tasks. However, these methods typically suffer from two major challenges: very high sample complexity and brittle convergence properties, which necessitate meticulous hyperparameter tuning. Both of these challenges severely limit the applicability of such methods to complex, real-world domains. In this paper, we propose soft actor-critic, an offpolicy actor-critic deep RL algorithm based on the maximum entropy reinforcement learning framework. In this framework, the actor aims to maximize expected reward while also maximizing entropy. That is, to succeed at the task while acting as randomly as possible. Prior deep RL methods based on this framework have been formulated as Q-learning methods. By combining off-policy updates with a stable stochastic actor-critic formulation, our method achieves state-of-the-art performance on a range of continuous control benchmark tasks, outperforming prior on-policy and off-policy methods. Furthermore, we demonstrate that, in contrast to other off-policy algorithms, our approach is very stable, achieving very similar performance across different random seeds.
translated by 谷歌翻译
We describe an iterative procedure for optimizing policies, with guaranteed monotonic improvement. By making several approximations to the theoretically-justified procedure, we develop a practical algorithm, called Trust Region Policy Optimization (TRPO). This algorithm is similar to natural policy gradient methods and is effective for optimizing large nonlinear policies such as neural networks. Our experiments demonstrate its robust performance on a wide variety of tasks: learning simulated robotic swimming, hopping, and walking gaits; and playing Atari games using images of the screen as input. Despite its approximations that deviate from the theory, TRPO tends to give monotonic improvement, with little tuning of hyperparameters.
translated by 谷歌翻译
自成立以来,建立在广泛任务中表现出色的普通代理的任务一直是强化学习的重要目标。这个问题一直是对Alarge工作体系的研究的主题,并且经常通过观察Atari 57基准中包含的广泛范围环境的分数来衡量的性能。 Agent57是所有57场比赛中第一个超过人类基准的代理商,但这是以数据效率差的代价,需要实现近800亿帧的经验。以Agent57为起点,我们采用了各种各样的形式,以降低超过人类基线所需的经验200倍。在减少数据制度和Propose有效的解决方案时,我们遇到了一系列不稳定性和瓶颈,以构建更强大,更有效的代理。我们还使用诸如Muesli和Muzero之类的高性能方法证明了竞争性的性能。 TOOUR方法的四个关键组成部分是(1)近似信任区域方法,该方法可以从TheOnline网络中稳定引导,(2)损失和优先级的归一化方案,在学习具有广泛量表的一组值函数时,可以提高鲁棒性, (3)改进的体系结构采用了NFNET的技术技术来利用更深的网络而无需标准化层,并且(4)政策蒸馏方法可使瞬时贪婪的策略加班。
translated by 谷歌翻译
我们研究了从连续动作空间到离散动作空间的软参与者批评(SAC)的适应性。我们重新访问香草囊,并在应用于离散设置时对其Q值低估和性能不稳定性问题提供深入的了解。因此,我们建议使用Q-CLIP的熵 - 平均Q学习和双平均Q学习来解决这些问题。对具有离散动作空间(包括Atari游戏和大型MOBA游戏)的典型基准测试的广泛实验显示了我们提出的方法的功效。我们的代码在:https://github.com/coldsummerday/revisiting-discrete-sac。
translated by 谷歌翻译
在本文中,我们提出了一种用于增强学习(RL)的最大熵框架,以克服在无模型基于样本的学习中实现最大熵RL的软演员 - 评论权(SAC)算法的限制。尽管在未来的最大熵RL指南学习政策中,未来的高熵达到国家,所提出的MAX-MIN熵框架旨在学会访问低熵的国家,并最大限度地提高这些低熵状态的熵,以促进更好的探索。对于一般马尔可夫决策过程(MDP),基于勘探和剥削的解剖学,在提议的MAX-MIN熵框架下构建了一种有效的算法。数值结果表明,该算法对目前最先进的RL算法产生了剧烈性能改进。
translated by 谷歌翻译
通过信任区域政策优化(TRPO)和近端策略优化(PPO)的存在,深入的强化学习取得了很大的成功,以提高其可扩展性和效率。但是,两种算法的悲观情绪,其中包括在信托区域受到限制或严格排除所有可疑梯度,已被证明可以抑制探索和损害代理的性能。为了解决这些问题,我们提出了一个转移的马尔可夫决策过程(MDP),或者更确切地说,随着熵的增强,以鼓励探索并增强逃脱次级的能力。我们的方法是可扩展的,可以适应奖励成型或自举。通过进行收敛分析,我们发现控制温度系数至关重要。但是,如果适当地调整它,即使在其他算法上,我们也可以实现出色的性能,因为它很简单而有效。我们的实验测试在Mujoco基准任务上增强了TRPO和PPO,这表明该代理商对更高的奖励区域表示振奋,并且在探索和剥削之间取得了平衡。我们验证方法在两个网格世界环境上的探索加成。
translated by 谷歌翻译
现实世界的顺序决策需要数据驱动的算法,这些算法在整个培训中为性能提供实际保证,同时还可以有效利用数据。无模型的深入强化学习代表了此类数据驱动决策的框架,但是现有算法通常只关注其中一个目标,同时牺牲了相对于另一个目标。政策算法确保整个培训的政策改进,但遭受了较高的样本复杂性,而政策算法则可以通过样本重用,但缺乏理论保证来有效利用数据。为了平衡这些竞争目标,我们开发了一系列广义政策改进算法,这些算法结合了政策改进的政策保证和理论支持的样本重用的效率。我们通过对DeepMind Control Suite的各种连续控制任务进行广泛的实验分析来证明这种新算法的好处。
translated by 谷歌翻译
强化学习的主要方法是根据预期的回报将信贷分配给行动。但是,我们表明回报可能取决于政策,这可能会导致价值估计的过度差异和减慢学习的速度。取而代之的是,我们证明了优势函数可以解释为因果效应,并与因果关系共享相似的属性。基于此洞察力,我们提出了直接优势估计(DAE),这是一种可以对优势函数进行建模并直接从政策数据进行估算的新方法,同时同时最大程度地减少了返回的方差而无需(操作 - )值函数。我们还通过显示如何无缝整合到DAE中来将我们的方法与时间差异方法联系起来。所提出的方法易于实施,并且可以通过现代参与者批评的方法很容易适应。我们对三个离散控制域进行经验评估DAE,并表明它可以超过广义优势估计(GAE),这是优势估计的强大基线,当将大多数环境应用于策略优化时。
translated by 谷歌翻译
尽管深度强化学习(RL)最近取得了许多成功,但其方法仍然效率低下,这使得在数据方面解决了昂贵的许多问题。我们的目标是通过利用未标记的数据中的丰富监督信号来进行学习状态表示,以解决这一问题。本文介绍了三种不同的表示算法,可以访问传统RL算法使用的数据源的不同子集使用:(i)GRICA受到独立组件分析(ICA)的启发,并训练深层神经网络以输出统计独立的独立特征。输入。 Grica通过最大程度地减少每个功能与其他功能之间的相互信息来做到这一点。此外,格里卡仅需要未分类的环境状态。 (ii)潜在表示预测(LARP)还需要更多的上下文:除了要求状态作为输入外,它还需要先前的状态和连接它们的动作。该方法通过预测当前状态和行动的环境的下一个状态来学习状态表示。预测器与图形搜索算法一起使用。 (iii)重新培训通过训练深层神经网络来学习国家表示,以学习奖励功能的平滑版本。该表示形式用于预处理输入到深度RL,而奖励预测指标用于奖励成型。此方法仅需要环境中的状态奖励对学习表示表示。我们发现,每种方法都有其优势和缺点,并从我们的实验中得出结论,包括无监督的代表性学习在RL解决问题的管道中可以加快学习的速度。
translated by 谷歌翻译
我们说,如果对其他超参数的更改可以在很大程度上补偿批处理大小的更改,则算法是批量尺寸不变的。随机梯度下降众所周知,该特性通过学习率将其具有小批量的大小。但是,由于它们如何控制策略更新的大小,因此某些策略优化算法(例如PPO)没有此属性。在这项工作中,我们展示了如何使这些算法批处理大小不变。我们的关键见解是将近端策略(用于控制策略更新)的近端策略(用于校正更正)。我们的实验有助于解释为什么这些算法起作用,并显示它们如何更有效地利用陈旧数据。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
Softmax政策的政策梯度(PG)估计与子最佳饱和初始化无效,当密度集中在次良动作时发生。从策略初始化或策略已经收敛后发生的环境的突然变化可能会出现次优策略饱和度,并且SoftMax PG估计器需要大量更新以恢复有效的策略。这种严重问题导致高样本低效率和对新情况的适应性差。为缓解此问题,我们提出了一种新的政策梯度估计,用于软MAX策略,该估计在批评中利用批评中的偏差和奖励信号中存在的噪声来逃避策略参数空间的饱和区域。我们对匪徒和古典MDP基准测试任务进行了分析和实验,表明我们的估算变得更加坚固,以便对政策饱和度更加强大。
translated by 谷歌翻译
安全的加强学习(RL)研究智能代理人不仅必须最大程度地提高奖励,而且还要避免探索不安全领域的问题。在这项研究中,我们提出了CUP,这是一种基于约束更新投影框架的新型政策优化方法,享有严格的安全保证。我们杯杯发展的核心是新提出的替代功能以及性能结合。与以前的安全RL方法相比,杯子的好处1)杯子将代孕功能推广到广义优势估计量(GAE),从而导致强烈的经验性能。 2)杯赛统一性界限,为某些现有算法提供更好的理解和解释性; 3)CUP仅通过一阶优化器提供非凸的实现,该优化器不需要在目标的凸面上进行任何强近似。为了验证我们的杯子方法,我们将杯子与在各种任务上进行的安全RL基线的全面列表进行了比较。实验表明杯子在奖励和安全限制满意度方面的有效性。我们已经在https://github.com/rl-boxes/safe-rl/tree/ main/cup上打开了杯子源代码。
translated by 谷歌翻译