用于自我监督的顺序行动对齐的最先进方法依赖于在时间上跨越视频的对应关系的深网络。它们要么学习横跨序列的帧到帧映射,但不利用时间信息,或者在每个视频对之间采用单调对齐,这忽略了动作顺序的变化。因此,这些方法无法处理涉及包含非单调动作序列的背景帧或视频的常见现实情景。在本文中,我们提出了一种方法来对齐野生序列动作,涉及不同的时间变化。为此,我们提出了一种方法来强制在最佳传输矩阵上强制执行时间前导者,该矩阵利用时间一致性,同时允许动作顺序变化。我们的模型占单调和非单调序列,并处理不应对齐的背景框架。我们展示了我们的方法在四个不同的基准数据集中始终如一地始终优于自我监督的顺序行动表示学习的最先进。
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
我们为无监督活动分割提出了一种新方法,它使用视频帧聚类作为借口任务,并同时执行表示学习和在线群集。这与先前作品相反,其中通常顺序地执行表示学习和聚类。我们通过采用时间最优运输来利用视频中的时间信息。特别是,我们纳入了一个时间正则化术语,其将活动的时间顺序保留到用于计算伪标签群集分配的标准最佳传输模块中。时间最优传输模块使我们的方法能够学习无监督活动细分的有效陈述。此外,先前的方法需要在以离线方式培养它们之前对整个数据集的学习功能存储在整个数据集中,而我们的方法在在线方式一次处理一个迷你批次。在三个公共数据集,即50沙拉,YouTube说明和早餐以及我们的数据集,即桌面装配的广泛评估表明,我们的方法在PAR或更优于以前的无监督活动分割方法,尽管内存限制显着较低。
translated by 谷歌翻译
我们提出了一种用于少量视频分类的新方法,该方法可以执行外观和时间对齐。特别是,给定一对查询和支持视频,我们通过框架级功能匹配进行外观对齐,以在视频之间达到外观相似性得分,同时利用时间订单保留的先验来获得视频之间的时间相似性得分。此外,我们介绍了一些视频分类框架,该框架利用了多个步骤的上述外观和时间相似性得分,即基于原型的训练和测试,以及电感和thresductive和转导的原型细化。据我们所知,我们的工作是第一个探索跨传感器的视频分类的工作。动力学和某些事物的V2数据集进行了广泛的实验表明,外观和时间对齐对于具有时间订单敏感性的数据集至关重要。我们的方法与两个数据集上的以前方法相似或更好的结果。我们的代码可在https://github.com/vinairesearch/fsvc-ata上找到。
translated by 谷歌翻译
无意的行动是罕见的事件,难以精确定义,并且高度依赖于动作的时间背景。在这项工作中,我们探讨了此类行动,并试图确定视频中的观点,这些动作从故意到无意中过渡。我们提出了一个多阶段框架,该框架利用了固有的偏见,例如运动速度,运动方向和为了识别无意的行动。为了通过自我监督的训练来增强表示,我们提出了时间转变,称为时间转变,称为无意义行动固有偏见(T2IBUA)的时间转变。多阶段方法对各个帧和完整剪辑的级别进行了时间信息。这些增强的表示表现出强烈的无意行动识别任务的表现。我们对我们的框架进行了广泛的消融研究,并报告结果对最先进的结果有了显着改善。
translated by 谷歌翻译
对于人类的行动理解,流行的研究方向是分析具有明确的语义含量的短视频剪辑,例如跳跃和饮酒。然而,了解短语行动的方法不能直接翻译成长期以来的人类动态,如跳舞,即使在语义上也是挑战的挑战。同时,自然语言处理(NLP)社区通过大规模预培训解决了稀缺的类似挑战,这改善了一种模型的几个下游任务。在这项工作中,我们研究如何以自我监督的方式进行分段和群集视频,即Acton Discovery,朝向视频标记的主要障碍。我们提出了一种两级框架,首先通过对应于它们的时间上下文的视频帧的两个增强视图对比其次的视频帧的两个增强视图来获得帧智表示。然后通过k-means群集视频集集中的帧展表示。然后通过从同一簇内的帧形成连续的运动序列来自动提取actons。通过标准化的相互信息和语言熵,我们通过Kendall的Tau和Lexicon构建步骤进行评估框架明智的表现。我们还研究了这个标记化的三种应用:类型分类,行动细分和行动组成。在AIST ++和PKU-MMD数据集上,与几个基线相比,Actons带来了显着的性能改进。
translated by 谷歌翻译
最近,行动识别因其在智能监视和人为计算机互动方面的全面和实用应用而受到了越来越多的关注。但是,由于数据稀缺性,很少有射击动作识别并未得到充分的探索,并且仍然具有挑战性。在本文中,我们提出了一种新型的分层组成表示(HCR)学习方法,以进行几次识别。具体而言,我们通过精心设计的层次聚类将复杂的动作分为几个子行动,并将子动作进一步分解为更细粒度的空间注意力亚actions(SAS-Actions)。尽管基类和新颖类之间存在很大的差异,但它们可以在子行动或SAS行为中共享相似的模式。此外,我们在运输问题中采用了地球移动器的距离,以测量视频样本之间的相似性在亚行动表示方面。它计算为距离度量的子行动之间的最佳匹配流,这有利于比较细粒模式。广泛的实验表明,我们的方法在HMDB51,UCF101和动力学数据集上实现了最新结果。
translated by 谷歌翻译
时间动作细分任务段视频暂时,并预测所有帧的动作标签。充分监督这种细分模型需要密集的框架动作注释,这些注释既昂贵又乏味。这项工作是第一个提出一个组成动作发现(CAD)框架的工作,该框架仅需要视频高级复杂活动标签作为时间动作分割的监督。提出的方法会自动使用活动分类任务发现组成视频动作。具体而言,我们定义了有限数量的潜在作用原型来构建视频级别的双重表示,通过活动分类培训共同学习了这些原型。这种设置赋予我们的方法,可以在多个复杂活动中发现潜在的共享动作。由于缺乏行动水平的监督,我们采用匈牙利匹配算法将潜在的动作原型与地面真理语义类别进行评估联系起来。我们表明,通过高级监督,匈牙利的匹配可以从现有的视频和活动级别扩展到全球水平。全球级别的匹配允许跨活动进行行动共享,这在文献中从未考虑过。广泛的实验表明,我们发现的动作可以帮助执行时间动作细分和活动识别任务。
translated by 谷歌翻译
对人类姿势和行动的认可对于自治系统与人们顺利互动。然而,相机通常在2D中捕获人类的姿势,作为图像和视频,这在跨越识别任务具有挑战性的观点来具有显着的外观变化。为了解决这个问题,我们探讨了来自2D信息的3D人体姿势中的识别相似性,在现有工作中没有得到很好地研究。在这里,我们提出了一种从2D主体关节键盘学习紧凑型视图 - 不变的嵌入空间的方法,而不明确地预测3D姿势。通过确定性映射难以代表预测和遮挡的2D姿势的输入模糊,因此我们采用了嵌入空间的概率制定。实验结果表明,与3D姿态估计模型相比,我们的嵌入模型在不同相机视图中检索类似的姿势时达到更高的准确性。我们还表明,通过培训简单的时间嵌入模型,我们在姿势序列检索方面取得了卓越的性能,并大大减少了基于堆叠帧的嵌入式的嵌入维度,以实现高效的大规模检索。此外,为了使我们的嵌入能够使用部分可见的输入,我们进一步调查培训期间的不同关键点遮挡增强策略。我们证明这些遮挡增强显着提高了部分2D输入姿势的检索性能。行动识别和视频对齐的结果表明,使用我们的嵌入没有任何额外培训,可以实现相对于每个任务专门培训的其他模型的竞争性能。
translated by 谷歌翻译
对比学习表明,在自我监督时空表示学习中有希望的潜力。大多数作品天真地采样不同的剪辑以构建正面和负对。但是,我们观察到该公式将模型倾向于背景场景偏见。根本原因是双重的。首先,场景差异通常比运动差异更明显,更容易区分。其次,从同一视频中采样的剪辑通常具有相似的背景,但具有不同的动作。仅将它们作为正对就可以将模型绘制为静态背景而不是运动模式。为了应对这一挑战,本文提出了一种新颖的双重对比配方。具体而言,我们将输入RGB视频序列分解为两种互补模式,静态场景和动态运动。然后,将原始的RGB功能分别靠近静态特征和对齐动态特征。这样,将静态场景和动态运动同时编码为紧凑的RGB表示。我们通过激活图进一步进行特征空间解耦,以提炼静态和动态相关的特征。我们将我们的方法称为\ textbf {d} ual \ textbf {c} intrastive \ textbf {l} ginal for spatio-tempormal \ textbf {r} ePresentation(dclr)。广泛的实验表明,DCLR学习有效的时空表示,并在UCF-101,HMDB-51和潜水-48数据集中获得最先进或可比性的性能。
translated by 谷歌翻译
聚类是无监督学习中无处不在的工具。大多数现有的自我监督表示方法通常基于视觉上的特征聚类样本。尽管这对于基于图像的自我审视非常有效,但它通常会失败,因为视频需要理解运动而不是专注于背景。将光流作为与RGB的互补信息可以减轻此问题。但是,我们观察到,两种观点的幼稚组合并不能带来有意义的收益。在本文中,我们提出了一种结合两种观点的原则方法。具体而言,我们提出了一种新颖的聚类策略,在该策略中,我们将每个视图的初始群集分配作为指导其他视图的最终群集分配。这个想法将对这两种视图强制执行类似的群集结构,并且形成的簇在语义上是抽象的,并且对来自每个单独视图的嘈杂输入。此外,我们提出了一种新颖的正则化策略来解决特征崩溃问题,这在基于聚类的自学学习方法中很常见。我们的广泛评估表明,我们学到的表示对下游任务的有效性,例如视频检索和动作识别。具体来说,我们在UCF上胜过7%,在HMDB上胜过4%,用于视频检索,而在UCF上的最高状态为5%,而HMDB则在HMDB上进行视频分类6%
translated by 谷歌翻译
现代自我监督的学习算法通常强制执行跨视图实例的表示的持久性。虽然非常有效地学习整体图像和视频表示,但这种方法成为在视频中学习时空时间细粒度的特征的子最优,其中场景和情况通过空间和时间演变。在本文中,我们介绍了上下文化的时空对比学习(Const-CL)框架,以利用自我监督有效学习时空时间细粒度的表示。我们首先设计一种基于区域的自我监督的借口任务,该任务要求模型从一个视图中学习将实例表示转换为上下文特征的另一个视图。此外,我们介绍了一个简单的网络设计,有效地调和了整体和本地表示的同时学习过程。我们评估我们对各种下游任务和CONST-CL的学习表现,实现了四个数据集的最先进结果。对于时空行动本地化,Const-CL可以使用AVA-Kinetics验证集的检测到框实现39.4%的地图和30.5%地图。对于对象跟踪,Const-CL在OTB2015上实现了78.1%的精度和55.2%的成功分数。此外,Const-CL分别在视频动作识别数据集,UCF101和HMDB51上实现了94.8%和71.9%的前1个微调精度。我们计划向公众发布我们的代码和模型。
translated by 谷歌翻译
视频自我监督的学习是一项挑战的任务,这需要模型的显着表达力量来利用丰富的空间时间知识,并从大量未标记的视频产生有效的监督信号。但是,现有方法未能提高未标记视频的时间多样性,并以明确的方式忽略精心建模的多尺度时间依赖性。为了克服这些限制,我们利用视频中的多尺度时间依赖性,并提出了一个名为时间对比图学习(TCGL)的新型视频自我监督学习框架,该框架共同模拟了片段间和片段间的时间依赖性用混合图对比学习策略学习的时间表示学习。具体地,首先引入空间 - 时间知识发现(STKD)模块以基于离散余弦变换的频域分析从视频中提取运动增强的空间时间表。为了显式模拟未标记视频的多尺度时间依赖性,我们的TCGL将关于帧和片段命令的先前知识集成到图形结构中,即片段/间隙间时间对比图(TCG)。然后,特定的对比学习模块旨在最大化不同图形视图中节点之间的协议。为了为未标记的视频生成监控信号,我们介绍了一种自适应片段订购预测(ASOP)模块,它利用视频片段之间的关系知识来学习全局上下文表示并自适应地重新校准通道明智的功能。实验结果表明我们的TCGL在大规模行动识别和视频检索基准上的最先进方法中的优势。
translated by 谷歌翻译
We address the problem of extracting key steps from unlabeled procedural videos, motivated by the potential of Augmented Reality (AR) headsets to revolutionize job training and performance. We decompose the problem into two steps: representation learning and key steps extraction. We employ self-supervised representation learning via a training strategy that adapts off-the-shelf video features using a temporal module. Training implements self-supervised learning losses involving multiple cues such as appearance, motion and pose trajectories extracted from videos to learn generalizable representations. Our method extracts key steps via a tunable algorithm that clusters the representations extracted from procedural videos. We quantitatively evaluate our approach with key step localization and also demonstrate the effectiveness of the extracted representations on related downstream tasks like phase classification. Qualitative results demonstrate that the extracted key steps are meaningful to succinctly represent the procedural tasks.
translated by 谷歌翻译
区分动作是按预期执行的,还是预期的动作失败是人类不仅具有的重要技能,而且对于在人类环境中运行的智能系统也很重要。但是,由于缺乏带注释的数据,认识到一项行动是无意的还是预期的,是否会失败。尽管可以在互联网中发现无意或失败动作的视频,但高注释成本是学习网络的主要瓶颈。因此,在这项工作中,我们研究了对无意采取行动预测的自学代表学习的问题。虽然先前的作品学习基于本地时间社区的表示形式,但我们表明需要视频的全局上下文来学习三个下游任务的良好表示:无意的动作分类,本地化和预期。在补充材料中,我们表明学习的表示形式也可用于检测视频中的异常情况。
translated by 谷歌翻译
Temporal action segmentation tags action labels for every frame in an input untrimmed video containing multiple actions in a sequence. For the task of temporal action segmentation, we propose an encoder-decoder-style architecture named C2F-TCN featuring a "coarse-to-fine" ensemble of decoder outputs. The C2F-TCN framework is enhanced with a novel model agnostic temporal feature augmentation strategy formed by the computationally inexpensive strategy of the stochastic max-pooling of segments. It produces more accurate and well-calibrated supervised results on three benchmark action segmentation datasets. We show that the architecture is flexible for both supervised and representation learning. In line with this, we present a novel unsupervised way to learn frame-wise representation from C2F-TCN. Our unsupervised learning approach hinges on the clustering capabilities of the input features and the formation of multi-resolution features from the decoder's implicit structure. Further, we provide the first semi-supervised temporal action segmentation results by merging representation learning with conventional supervised learning. Our semi-supervised learning scheme, called ``Iterative-Contrastive-Classify (ICC)'', progressively improves in performance with more labeled data. The ICC semi-supervised learning in C2F-TCN, with 40% labeled videos, performs similar to fully supervised counterparts.
translated by 谷歌翻译
鉴于在图像领域的对比学习的成功,目前的自我监督视频表示学习方法通​​常采用对比损失来促进视频表示学习。然而,当空闲地拉动视频的两个增强视图更接近时,该模型倾向于将常见的静态背景作为快捷方式学习但不能捕获运动信息,作为背景偏置的现象。这种偏差使模型遭受弱泛化能力,导致在等下游任务中的性能较差,例如动作识别。为了减轻这种偏见,我们提出\ textbf {f} Oreground-b \ textbf {a} ckground \ textbf {me} rging(sm} rging(fame)故意将所选视频的移动前景区域故意构成到其他人的静态背景上。具体而言,没有任何非货架探测器,我们通过帧差和颜色统计从背景区域中提取移动前景,并在视频中擦拭背景区域。通过利用原始剪辑和熔融夹之间的语义一致性,该模型更多地关注运动模式,并从背景快捷方式中脱位。广泛的实验表明,FAME可以有效地抵抗背景作弊,从而在UCF101,HMDB51和Diving48数据集中实现了最先进的性能。
translated by 谷歌翻译
在本文中,我们提出了一种新的方法来增强从单个可佩戴相机捕获的视频计算的人的3D身体姿势估计。关键的想法是利用在联合嵌入空间中链接第一和第三次视图的高级功能。为了了解这样的嵌入空间,我们介绍了First2第三姿势,这是一个近2,000个视频的新配对同步数据集,描绘了从第一和第三视角捕获的人类活动。我们明确地考虑了空间和运动域功能,同时使用以自我监督的方式培训的半暹罗架构。实验结果表明,使用我们的数据集学习的联合多视图嵌入式空间可用于从任意单视图的自拍视频中提取歧视特征,而无需需要域适应,也不知道相机参数。在三种监督最先进的方法中,我们在两个无约束数据集中实现了重大改善了两个无约束的数据集。我们的数据集和代码将可用于研究目的。
translated by 谷歌翻译
在本文中,我们提出了一种新颖的学习方案,用于自我监督的视频表示学习。受到人类如何理解视频的激励,我们建议先学习一般视觉概念,然后参加歧视性的局部区域以进行视频理解。具体而言,我们利用静态框架和框架差异来帮助解开静态和动态概念,并分别使潜在空间中的概念分布对齐。我们增加了多样性和忠诚的正常化,以确保我们学习一套紧凑的有意义的概念。然后,我们采用跨注意机制来汇总不同概念的详细局部特征,并滤除具有低激活的冗余概念以执行局部概念对比。广泛的实验表明,我们的方法提炼有意义的静态和动态概念来指导视频理解,并在UCF-101,HMDB-51和潜水-48上获得最新的结果。
translated by 谷歌翻译
我们调查视觉跨实施的模仿设置,其中代理商学习来自其他代理的视频(例如人类)的策略,示范相同的任务,但在其实施例中具有缺点差异 - 形状,动作,终效应器动态等。在这项工作中,我们证明可以从对这些差异强大的跨实施例证视频自动发现和学习基于视觉的奖励功能。具体而言,我们介绍了一种用于跨实施的跨实施的自我监督方法(XIRL),它利用时间周期 - 一致性约束来学习深度视觉嵌入,从而从多个专家代理的示范的脱机视频中捕获任务进度,每个都执行相同的任务不同的原因是实施例差异。在我们的工作之前,从自我监督嵌入产生奖励通常需要与参考轨迹对齐,这可能难以根据STARK实施例的差异来获取。我们凭经验显示,如果嵌入式了解任务进度,则只需在学习的嵌入空间中占据当前状态和目标状态之间的负距离是有用的,作为培训与加强学习的培训政策的奖励。我们发现我们的学习奖励功能不仅适用于在训练期间看到的实施例,而且还概括为完全新的实施例。此外,在将现实世界的人类示范转移到模拟机器人时,我们发现XIRL比当前最佳方法更具样本。 https://x-irl.github.io提供定性结果,代码和数据集
translated by 谷歌翻译