模拟到现实的转移已成为一种流行且非常成功的方法,用于培训各种任务的机器人控制政策。但是,确定在模拟中训练的政策何时准备将其转移到物理世界通常是一个挑战。部署经过很少的模拟数据训练的策略可能会导致物理硬件的不可靠和危险行为。另一方面,模拟中的过度训练会导致策略过度拟合模拟器的视觉外观和动力学。在这项工作中,我们研究了自动确定在模拟中训练的策略何时可以可靠地转移到物理机器人的策略。我们在机器人织物操纵的背景下专门研究了这些思想,因为成功建模织物的动力学和视觉外观的困难,成功的SIM2Real转移尤其具有挑战性。导致织物平滑任务表明我们的切换标准与实际的性能很好地相关。特别是,我们基于信心的切换标准在培训总预算的55-60%之内达到了87.2-93.7%的平均最终面料覆盖率。有关代码和补充材料,请参见https://tinyurl.com/lsc-case。
translated by 谷歌翻译
由于配置空间的高维度以及受各种材料特性影响的动力学的复杂性,布料操纵是一项具有挑战性的任务。复杂动力学的效果甚至在动态折叠中更为明显,例如,当平方板通过单个操纵器将一块织物折叠为两种时。为了说明复杂性和不确定性,使用例如通常需要视觉。但是,构建动态布折叠的视觉反馈政策是一个开放的问题。在本文中,我们提出了一种解决方案,该解决方案可以使用强化学习(RL)学习模拟政策,并将学识渊博的政策直接转移到现实世界中。此外,要学习一种操纵多种材料的单一策略,我们将模拟中的材料属性随机化。我们评估了现实世界实验中视觉反馈和材料随机化的贡献。实验结果表明,所提出的解决方案可以使用现实世界中的动态操作成功地折叠不同的面料类型。代码,数据和视频可从https://sites.google.com/view/dynamic-cloth-folding获得
translated by 谷歌翻译
Fabric manipulation is a long-standing challenge in robotics due to the enormous state space and complex dynamics. Learning approaches stand out as promising for this domain as they allow us to learn behaviours directly from data. Most prior methods however rely heavily on simulation, which is still limited by the large sim-to-real gap of deformable objects or rely on large datasets. A promising alternative is to learn fabric manipulation directly from watching humans perform the task. In this work, we explore how demonstrations for fabric manipulation tasks can be collected directly by human hands, providing an extremely natural and fast data collection pipeline. Then, using only a handful of such demonstrations, we show how a sample-efficient pick-and-place policy can be learned and deployed on a real robot, without any robot data collection at all. We demonstrate our approach on a fabric folding task, showing that our policy can reliably reach folded states from crumpled initial configurations.
translated by 谷歌翻译
Exploration in environments with sparse rewards has been a persistent problem in reinforcement learning (RL). Many tasks are natural to specify with a sparse reward, and manually shaping a reward function can result in suboptimal performance. However, finding a non-zero reward is exponentially more difficult with increasing task horizon or action dimensionality. This puts many real-world tasks out of practical reach of RL methods. In this work, we use demonstrations to overcome the exploration problem and successfully learn to perform long-horizon, multi-step robotics tasks with continuous control such as stacking blocks with a robot arm. Our method, which builds on top of Deep Deterministic Policy Gradients and Hindsight Experience Replay, provides an order of magnitude of speedup over RL on simulated robotics tasks. It is simple to implement and makes only the additional assumption that we can collect a small set of demonstrations. Furthermore, our method is able to solve tasks not solvable by either RL or behavior cloning alone, and often ends up outperforming the demonstrator policy.
translated by 谷歌翻译
强化学习(RL)算法有望为机器人系统实现自主技能获取。但是,实际上,现实世界中的机器人RL通常需要耗时的数据收集和频繁的人类干预来重置环境。此外,当部署超出知识的设置超出其学习的设置时,使用RL学到的机器人政策通常会失败。在这项工作中,我们研究了如何通过从先前看到的任务中收集的各种离线数据集的有效利用来应对这些挑战。当面对一项新任务时,我们的系统会适应以前学习的技能,以快速学习执行新任务并将环境返回到初始状态,从而有效地执行自己的环境重置。我们的经验结果表明,将先前的数据纳入机器人增强学习中可以实现自主学习,从而大大提高了学习的样本效率,并可以更好地概括。
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
通过模仿学习(IL)使用用户提供的演示,或者通过使用大量的自主收集的体验来学习机器人技能。方法具有互补的经验和缺点:RL可以达到高度的性能,但需要缺陷,但是需要缺乏要求,但是需要达到高水平的性能,但需要达到高度的性能这可能非常耗时和不安全; IL不要求Xploration,但只学习与所提供的示范一样好的技能。一种方法将两种方法的优势结合在一起?一系列的方法旨在解决这个问题,提出了整合IL和RL的元素的各种技术。然而,扩大了这种方法,这些方法复杂的机器人技能,整合了不同的离线数据,概括到现实世界的情景仍然存在重大挑战。在本文中,USAIM是测试先前IL + RL算法的可扩展性,并设计了一种系统的详细实验实验,这些实验结合了现有的组件,其具有效果有效和可扩展的方式。为此,我们展示了一系列关于了解每个设计决定的影响的一系列实验,以便开发可以利用示范和异构的先前数据在一系列现实世界和现实的模拟问题上获得最佳表现的批准方法。我们通过致电Wap-opt的完整方法将优势加权回归[1,2]和QT-opt [3]结合在一起,提供了一个UnifiedAgveach,用于集成机器人操作的演示和离线数据。请参阅HTTPS: //awopt.github.io有关更多详细信息。
translated by 谷歌翻译
Developing robots that are capable of many skills and generalization to unseen scenarios requires progress on two fronts: efficient collection of large and diverse datasets, and training of high-capacity policies on the collected data. While large datasets have propelled progress in other fields like computer vision and natural language processing, collecting data of comparable scale is particularly challenging for physical systems like robotics. In this work, we propose a framework to bridge this gap and better scale up robot learning, under the lens of multi-task, multi-scene robot manipulation in kitchen environments. Our framework, named CACTI, has four stages that separately handle data collection, data augmentation, visual representation learning, and imitation policy training. In the CACTI framework, we highlight the benefit of adapting state-of-the-art models for image generation as part of the augmentation stage, and the significant improvement of training efficiency by using pretrained out-of-domain visual representations at the compression stage. Experimentally, we demonstrate that 1) on a real robot setup, CACTI enables efficient training of a single policy capable of 10 manipulation tasks involving kitchen objects, and robust to varying layouts of distractor objects; 2) in a simulated kitchen environment, CACTI trains a single policy on 18 semantic tasks across up to 50 layout variations per task. The simulation task benchmark and augmented datasets in both real and simulated environments will be released to facilitate future research.
translated by 谷歌翻译
我们研究机器人如何自主学习需要联合导航和抓握的技能。虽然原则上的加固学习提供自动机器人技能学习,但在实践中,在现实世界中的加固学习是挑战性的,并且往往需要大量的仪器和监督。我们的宗旨是以无论没有人为干预的自主方式,设计用于学习导航和操纵的机器人强化学习系统,在没有人为干预的情况下,在现实的假设下实现持续学习。我们建议的系统relmm,可以在没有任何环境仪器的现实世界平台上不断学习,没有人为干预,而无需访问特权信息,例如地图,对象位置或环境的全局视图。我们的方法采用模块化策略与组件进行操纵和导航,其中操纵政策不确定性驱动导航控制器的探索,操作模块为导航提供奖励。我们在房间清理任务上评估我们的方法,机器人必须导航到并拾取散落在地板上的物品。在掌握课程训练阶段之后,relmm可以在自动真实培训的大约40小时内自动学习导航并完全抓住。
translated by 谷歌翻译
本文详细介绍了我们对2021年真正机器人挑战的第一阶段提交的提交;三指机器人必须沿指定目标轨迹携带立方体的挑战。为了解决第1阶段,我们使用一种纯净的增强学习方法,该方法需要对机器人系统或机器人抓握的最少专家知识。与事后的经验重播一起采用了稀疏,基于目标的奖励,以教导控制立方体将立方体移至目标的X和Y坐标。同时,采用了基于密集的距离奖励来教授将立方体提升到目标的Z坐标(高度组成部分)的政策。该策略在将域随机化的模拟中进行培训,然后再转移到真实的机器人进行评估。尽管此次转移后的性能往往会恶化,但我们的最佳政策可以通过有效的捏合掌握能够成功地沿目标轨迹提升真正的立方体。我们的方法表现优于所有其他提交,包括那些利用更传统的机器人控制技术的提交,并且是第一个解决这一挑战的纯学习方法。
translated by 谷歌翻译
深度学习的兴起导致机器人研究中的范式转变,有利于需要大量数据的方法。在物理平台上生成这样的数据集是昂贵的。因此,最先进的方法在模拟中学习,其中数据生成快速以及廉价并随后将知识转移到真实机器人(SIM-to-Real)。尽管变得越来越真实,但所有模拟器都是基于模型的施工,因此不可避免地不完善。这提出了如何修改模拟器以促进学习机器人控制政策的问题,并克服模拟与现实之间的不匹配,通常称为“现实差距”。我们对机器人学的SIM-Teal研究提供了全面的审查,专注于名为“域随机化”的技术,这是一种从随机仿真学习的方法。
translated by 谷歌翻译
最近的工作表明,2臂“ Fling”运动对于服装平滑可能是有效的。我们考虑单臂弹性运动。与几乎不需要机器人轨迹参数调整的2臂fling运动不同,单臂fling运动对轨迹参数很敏感。我们考虑一个单一的6多机器人臂,该机器人臂学习跨越轨迹以实现高衣覆盖率。给定服装抓握点,机器人在物理实验中探索了不同的参数化fling轨迹。为了提高学习效率,我们提出了一种粗到精细的学习方法,该方法首先使用多军匪徒(MAB)框架有效地找到候选动作,然后通过连续优化方法来完善。此外,我们提出了基于Fling Fall结果不确定性的新颖培训和执行时间停止标准。与基线相比,我们表明所提出的方法显着加速学习。此外,由于通过自学人员收集的类似服装的先前经验,新服装的MAB学习时间最多减少了87%。我们评估了6种服装类型:毛巾,T恤,长袖衬衫,礼服,汗衫和牛仔裤。结果表明,使用先前的经验,机器人需要30分钟以下的时间才能为达到60-94%覆盖率的新型服装学习一项动作。
translated by 谷歌翻译
无监督的表示学习的最新进展显着提高了模拟环境中培训强化学习政策的样本效率。但是,尚未看到针对实体强化学习的类似收益。在这项工作中,我们专注于从像素中启用数据有效的实体机器人学习。我们提出了有效的机器人学习(编码器)的对比前训练和数据增强,该方法利用数据增强和无监督的学习来从稀疏奖励中实现对实体ARM策略的样本效率培训。虽然对比预训练,数据增强,演示和强化学习不足以进行有效学习,但我们的主要贡献表明,这些不同技术的组合导致了一种简单而数据效率的方法。我们表明,只有10个示范,一个机器人手臂可以从像素中学习稀疏的奖励操纵策略,例如到达,拾取,移动,拉动大物体,翻转开关并在短短30分钟内打开抽屉现实世界训练时间。我们在项目网站上包括视频和代码:https://sites.google.com/view/felfficited-robotic-manipulation/home
translated by 谷歌翻译
By transferring knowledge from large, diverse, task-agnostic datasets, modern machine learning models can solve specific downstream tasks either zero-shot or with small task-specific datasets to a high level of performance. While this capability has been demonstrated in other fields such as computer vision, natural language processing or speech recognition, it remains to be shown in robotics, where the generalization capabilities of the models are particularly critical due to the difficulty of collecting real-world robotic data. We argue that one of the keys to the success of such general robotic models lies with open-ended task-agnostic training, combined with high-capacity architectures that can absorb all of the diverse, robotic data. In this paper, we present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties. We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks. The project's website and videos can be found at robotics-transformer.github.io
translated by 谷歌翻译
使用单个参数化动态动作操纵可变形物体对蝇钓,宽毯和播放洗牌板等任务非常有用。此类任务作为输入所需的最终状态并输出一个参数化的开环动态机器人动作,它向最终状态产生轨迹。这对于具有涉及摩擦力的复杂动态的长地平轨迹尤其具有挑战性。本文探讨了平面机器人铸造的任务(PRC):其中握住电缆一端的机器人手腕的一个平面运动使另一端朝向所需的目标滑过平面。 PRC允许电缆达到机器人工作区以外的点,并在家庭,仓库和工厂中具有电缆管理的应用。为了有效地学习给定电缆的PRC策略,我们提出了Real2Sim2Real,一个自动收集物理轨迹示例的自我监督框架,以使用差分演进调谐动态模拟器的参数,生成许多模拟示例,然后使用加权学习策略模拟和物理数据的组合。我们使用三种模拟器,ISAAC健身房分段,ISAAC健身房 - 混合动力和Pybullet,两个功能近似器,高斯工艺和神经网络(NNS),以及具有不同刚度,扭转和摩擦的三个电缆。结果每条电缆的16个举出的测试目标表明,使用ISAAC健身房分段的NN PRC策略达到中位误差距离(电缆长度的百分比),范围为8%至14%,表现优于真实或仅培训的基线和政策。只有模拟的例子。 https://tinyurl.com/robotcast可以使用代码,数据和视频。
translated by 谷歌翻译
Poor sample efficiency continues to be the primary challenge for deployment of deep Reinforcement Learning (RL) algorithms for real-world applications, and in particular for visuo-motor control. Model-based RL has the potential to be highly sample efficient by concurrently learning a world model and using synthetic rollouts for planning and policy improvement. However, in practice, sample-efficient learning with model-based RL is bottlenecked by the exploration challenge. In this work, we find that leveraging just a handful of demonstrations can dramatically improve the sample-efficiency of model-based RL. Simply appending demonstrations to the interaction dataset, however, does not suffice. We identify key ingredients for leveraging demonstrations in model learning -- policy pretraining, targeted exploration, and oversampling of demonstration data -- which forms the three phases of our model-based RL framework. We empirically study three complex visuo-motor control domains and find that our method is 150%-250% more successful in completing sparse reward tasks compared to prior approaches in the low data regime (100K interaction steps, 5 demonstrations). Code and videos are available at: https://nicklashansen.github.io/modemrl
translated by 谷歌翻译
Figure 1: A five-fingered humanoid hand trained with reinforcement learning manipulating a block from an initial configuration to a goal configuration using vision for sensing.
translated by 谷歌翻译
我们研究了从机器人交互的大型离线数据集学习一系列基于视觉的操纵任务的问题。为了实现这一目标,人类需要简单有效地将任务指定给机器人。目标图像是一种流行的任务规范形式,因为它们已经在机器人的观察空间接地。然而,目标图像也有许多缺点:它们对人类提供的不方便,它们可以通过提供导致稀疏奖励信号的所需行为,或者在非目标达到任务的情况下指定任务信息。自然语言为任务规范提供了一种方便而灵活的替代方案,而是随着机器人观察空间的接地语言挑战。为了可扩展地学习此基础,我们建议利用具有人群源语言标签的离线机器人数据集(包括高度最佳,自主收集的数据)。使用此数据,我们学习一个简单的分类器,该分类器预测状态的更改是否完成了语言指令。这提供了一种语言调节奖励函数,然后可以用于离线多任务RL。在我们的实验中,我们发现,在语言条件的操作任务中,我们的方法优于目标 - 图像规格和语言条件仿制技术超过25%,并且能够从自然语言中执行Visuomotor任务,例如“打开右抽屉“和”移动订书机“,在弗兰卡·埃米卡熊猫机器人上。
translated by 谷歌翻译
物理模拟器在安全,不受约束的环境中方便学习加强学习政策表现出了巨大的希望。但是,由于现实差距,将获得的知识转移到现实世界可能会具有挑战性。为此,最近已经提出了几种方法来自动调整具有后验分布的实际数据,以在训练时与域随机化一起使用。这些方法已被证明在不同的设置和假设下适用于各种机器人任务。然而,现有文献缺乏对转移性能和实际数据效率的现有自适应域随机方法的详尽比较。在这项工作中,我们为离线和在线方法(Simopt,Bayrn,Droid,Dropo)提供了一个开放的基准,以阐明最适合每个设置和手头的任务。我们发现,在线方法受到下一次迭代的当前学会策略的质量受到限制,而离线方法有时可能会在使用开环命令中模拟中重播轨迹时失败。所使用的代码将在https://github.com/gabrieletiboni/adr-benchmark上发布。
translated by 谷歌翻译
生成的对抗性模仿学习(GAIL)可以学习政策,而无需明确定义示威活动的奖励功能。盖尔有可能学习具有高维观测值的政策,例如图像。通过将Gail应用于真正的机器人,也许可以为清洗,折叠衣服,烹饪和清洁等日常活动获得机器人政策。但是,由于错误,人类示范数据通常是不完美的,这会降低由此产生的政策的表现。我们通过关注以下功能来解决此问题:1)许多机器人任务是目标任务,而2)在演示数据中标记此类目标状态相对容易。考虑到这些,本文提出了目标感知的生成对抗性模仿学习(GA-GAIL),该学习通过引入第二个歧视者来训练政策,以与指示演示数据的第一个歧视者并行区分目标状态。这扩展了一个标准的盖尔框架,即使通过促进实现目标状态的目标状态歧视者,甚至可以从不完美的演示中学习理想的政策。此外,GA-GAIL采用熵最大化的深层P-NETWORK(EDPN)作为发电机,该发电机考虑了策略更新中的平滑度和因果熵,以从两个歧视者中获得稳定的政策学习。我们提出的方法成功地应用于两项真正的布料操作任务:将手帕翻过来折叠衣服。我们确认它在没有特定特定任务奖励功能设计的情况下学习了布料操作政策。实际实验的视频可在https://youtu.be/h_nii2ooure上获得。
translated by 谷歌翻译