许多机器人任务需要高维传感器,如相机和激光雷达,以导航复杂的环境,但是在这些传感器周围开发认可的安全反馈控制器仍然是一个具有挑战性的公开问题,特别是在涉及学习时的开放问题。以前的作品通过分离感知和控制子系统并对感知子系统的能力做出强烈的假设来证明了感知反馈控制器的安全性。在这项工作中,我们介绍了一种新的启用学习的感知反馈混合控制器,在那里我们使用控制屏障函数(CBF)和控制Lyapunov函数(CLF)来显示全堆叠感知反馈控制器的安全性和活力。我们使用神经网络直接在机器人的观察空间中学习全堆栈系统的CBF和CLF,而无需承担基于感知的状态估计器。我们的混合控制器称为基因座(使用切换启用了学习的观察反馈控制),可以安全地导航未知的环境,始终如一地达到其目标,并将安全性安全地概括为培训数据集之外的环境。我们在模拟和硬件中展示了实验中的轨迹,在那里它使用LIDAR传感器的反馈成功地导航变化环境。
translated by 谷歌翻译
Learning-enabled control systems have demonstrated impressive empirical performance on challenging control problems in robotics, but this performance comes at the cost of reduced transparency and lack of guarantees on the safety or stability of the learned controllers. In recent years, new techniques have emerged to provide these guarantees by learning certificates alongside control policies -- these certificates provide concise, data-driven proofs that guarantee the safety and stability of the learned control system. These methods not only allow the user to verify the safety of a learned controller but also provide supervision during training, allowing safety and stability requirements to influence the training process itself. In this paper, we provide a comprehensive survey of this rapidly developing field of certificate learning. We hope that this paper will serve as an accessible introduction to the theory and practice of certificate learning, both to those who wish to apply these tools to practical robotics problems and to those who wish to dive more deeply into the theory of learning for control.
translated by 谷歌翻译
为了浏览复杂的环境,机器人必须越来越多地使用高维视觉反馈(例如图像)进行控制。但是,依靠高维图像数据来控制决策会提出重要的问题;特别是,我们如何证明视觉反馈控制器的安全性?控制屏障功能(CBF)是在状态反馈设置中证明反馈控制器安全性的强大工具,但是由于需要预测未来的观察以评估屏障功能,因此传统上,CBF非常适合视觉反馈控制。 。在这项工作中,我们通过利用神经辐射领域(NERFS)的最新进展来解决这个问题,该领域学习了3D场景的隐式表示,并且可以从以前未见的摄像机的角度呈现图像,以提供基于CBF的单步视觉远景控制器。这种新颖的组合能够滤除不安全的动作和干预以保持安全性。我们在实时仿真实验中证明了控制器的效果,在实时模拟实验中,它成功阻止了机器人采取危险的动作。
translated by 谷歌翻译
在本文中,我们基于非线性模型预测控制(NMPC)方法提出了一种分散的控制方法,该方法采用屏障证书在具有静态和/或动态障碍的未知环境中安全导航的多个非独立轮式移动机器人。该方法将学习的屏障功能(LBF)纳入NMPC设计中,以确保安全机器人导航,即防止机器人与其他机器人和障碍物的碰撞。我们将我们提出的控制方法称为NMPC-LBF。由于每个机器人都没有关于障碍物和其他机器人的先验知识,因此我们使用每个机器人实时运行的深神经网络(DEEPNN),仅从机器人的刺激镜头和探针测量中学习屏障功能(BF)。深文经过训练,可以学习分离安全和不安全地区的BF。在不同情况下,我们对模拟和实际Turtlebot3汉堡机器人实施了建议的方法。实施结果显示了NMPC-LBF方法在确保机器人安全导航方面的有效性。
translated by 谷歌翻译
过去半年来,从控制和强化学习社区的真实机器人部署的安全学习方法的贡献数量急剧上升。本文提供了一种简洁的但整体审查,对利用机器学习实现的最新进展,以实现在不确定因素下的安全决策,重点是统一控制理论和加固学习研究中使用的语言和框架。我们的评论包括:基于学习的控制方法,通过学习不确定的动态,加强学习方法,鼓励安全或坚固性的加固学习方法,以及可以正式证明学习控制政策安全的方法。随着基于数据和学习的机器人控制方法继续获得牵引力,研究人员必须了解何时以及如何最好地利用它们在安全势在必行的现实情景中,例如在靠近人类的情况下操作时。我们突出了一些开放的挑战,即将在未来几年推动机器人学习领域,并强调需要逼真的物理基准的基准,以便于控制和加固学习方法之间的公平比较。
translated by 谷歌翻译
基于屏障函数的控制证书一直是一个强大的工具,可能为动态系统生成可能的安全控制策略。但是,基于屏障证书的现有方法通常用于具有可微差动态的白盒系统,这使得它们可以不适用于系统是黑盒的许多实用应用,并且不能准确地建模。另一方面,黑盒系统的无模型加强学习(RL)方法缺乏安全保证和低采样效率。在本文中,我们提出了一种新的方法,可以为黑盒动态系​​统学习安全控制政策和屏障证书,而无需准确的系统模型。我们的方法即使在黑盒式动态系统是不可差分的情况下,我们也可以重新设计损耗函数以反向传播梯度对控制策略,并且我们表明安全证书在黑盒系统上保持。仿真的经验结果表明,与最先进的黑匣子安全控制方法相比,我们的方法可以通过实现近100%的安全性和目标来实现近100%的安全性和目标达到速度。我们的学习代理商也可以在保持原始性能的同时概括取消观察方案。源代码可以在https://github.com/zengyi-qin/bcbf找到。
translated by 谷歌翻译
本研究提出了一种具有动态障碍物和不均匀地形的部分可观察环境中的BipeDal运动的安全任务和运动计划(夯实)的分层综合框架。高级任务规划师采用线性时间逻辑(LTL),用于机器人及其环境之间的反应游戏合成,并为导航安全和任务完成提供正式保证。为了解决环境部分可观察性,在高级导航计划者采用信仰抽象,以估计动态障碍的位置。因此,合成的动作规划器向中级运动规划器发送一组运动动作,同时基于运动过程的阶数模型(ROM)结合从安全定理提取的安全机置规范。运动计划程序采用ROM设计安全标准和采样算法,以生成准确跟踪高级动作的非周期性运动计划。为了解决外部扰动,本研究还调查了关键帧运动状态的安全顺序组成,通过可达性分析实现了对外部扰动的强大转变。最终插值一组基于ROM的超参数,以设计由轨迹优化生成的全身运动机器,并验证基于ROM的可行部署,以敏捷机器人设计的20多个自由的Cassie机器人。
translated by 谷歌翻译
安全限制和最优性很重要,但有时控制器有时相互冲突的标准。虽然这些标准通常与不同的工具单独解决以维持正式保障,但在惩罚失败时,加强学习的常见做法是惩罚,以惩罚为单纯的启发式。我们严格地检查了安全性和最优性与惩罚的关系,并对安全价值函数进行了足够的条件:对给定任务的最佳价值函数,并强制执行安全约束。我们通过强大的二元性证明,揭示这种关系的结构,表明始终存在一个有限的惩罚,引起安全值功能。这种惩罚并不是独特的,但大不束缚:更大的惩罚不会伤害最优性。虽然通常无法计算最低所需的惩罚,但我们揭示了清晰的惩罚,奖励,折扣因素和动态互动的结构。这种洞察力建议实用,理论引导的启发式设计奖励功能,用于控制安全性很重要的控制问题。
translated by 谷歌翻译
尽管移动操作在工业和服务机器人技术方面都重要,但仍然是一个重大挑战,因为它需要将最终效应轨迹的无缝整合与导航技能以及对长匹马的推理。现有方法难以控制大型配置空间,并导航动态和未知环境。在先前的工作中,我们建议将移动操纵任务分解为任务空间中最终效果的简化运动生成器,并将移动设备分解为训练有素的强化学习代理,以说明移动基础的运动基础,以说明运动的运动可行性。在这项工作中,我们引入了移动操作的神经导航(n $^2 $ m $^2 $),该导航将这种分解扩展到复杂的障碍环境,并使其能够解决现实世界中的广泛任务。最终的方法可以在未探索的环境中执行看不见的长马任务,同时立即对动态障碍和环境变化做出反应。同时,它提供了一种定义新的移动操作任务的简单方法。我们证明了我们提出的方法在多个运动学上多样化的移动操纵器上进行的广泛模拟和现实实验的能力。代码和视频可在http://mobile-rl.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
我们为一类不确定的控制型非线性系统提供了一种运动计划算法,该系统可以在使用高维传感器测量值(例如RGB-D图像)和反馈控制循环中的学习感知模块时确保运行时安全性和目标达到性能。首先,给定状态和观察数据集,我们训练一个感知系统,该系统试图从观察结果中倒入状态的一部分,并估计感知错误上的上限,该误差有效,在数据附近有可信赖的域中具有很高的概率。接下来,我们使用收缩理论来设计稳定的状态反馈控制器和收敛的动态观察者,该观察者使用学习的感知系统来更新其状态估计。当该控制器在动力学和不正确状态估计中遇到错误时,我们会在轨迹跟踪误差上得出一个绑定。最后,我们将此绑定到基于采样的运动计划器中,引导它返回可以使用传感器数据在运行时安全跟踪的轨迹。我们展示了我们在4D汽车上模拟的方法,6D平面四极管以及使用RGB(-D)传感器测量的17D操纵任务,这表明我们的方法安全可靠地将系统转向了目标,而无法考虑的基线,这些基线无法考虑。受信任的域或状态估计错误可能不安全。
translated by 谷歌翻译
In this work, we propose a collision-free source seeking control framework for unicycle robots traversing an unknown cluttered environment. In this framework, the obstacle avoidance is guided by the control barrier functions (CBF) embedded in quadratic programming and the source seeking control relies solely on the use of on-board sensors that measure signal strength of the source. To tackle the mixed relative degree of the CBF, we proposed three different CBF, namely the zeroing control barrier functions (ZCBF), exponential control barrier functions (ECBF), and reciprocal control barrier functions (RCBF) that can directly be integrated with our recent gradient-ascent source-seeking control law. We provide rigorous analysis of the three different methods and show the efficacy of the approaches in simulations using Matlab, as well as, using a realistic dynamic environment with moving obstacles in Gazebo/ROS.
translated by 谷歌翻译
神经网络(NNS)已成功地用于代表复杂动力学系统的状态演变。这样的模型,称为NN动态模型(NNDMS),使用NN的迭代噪声预测来估计随时间推移系统轨迹的分布。尽管它们的准确性,但对NNDMS的安全分析仍然是一个具有挑战性的问题,并且在很大程度上尚未探索。为了解决这个问题,在本文中,我们介绍了一种为NNDM提供安全保证的方法。我们的方法基于随机屏障函数,其与安全性的关系类似于Lyapunov功能的稳定性。我们首先展示了通过凸优化问题合成NNDMS随机屏障函数的方法,该问题又为系统的安全概率提供了下限。我们方法中的一个关键步骤是,NNS的最新凸近似结果的利用是找到零件线性边界,这允许将屏障函数合成问题作为一个方形优化程序的制定。如果获得的安全概率高于所需的阈值,则该系统将获得认证。否则,我们引入了一种生成控制系统的方法,该系统以最小的侵入性方式稳健地最大化安全概率。我们利用屏障函数的凸属性来提出最佳控制合成问题作为线性程序。实验结果说明了该方法的功效。即,他们表明该方法可以扩展到具有多层和数百个神经元的多维NNDM,并且控制器可以显着提高安全性概率。
translated by 谷歌翻译
稳定性和安全性是成功部署自动控制系统的关键特性。作为一个激励示例,请考虑在复杂的环境中自动移动机器人导航。概括到不同操作条件的控制设计需要系统动力学模型,鲁棒性建模错误以及对安全\ newzl {约束}的满意度,例如避免碰撞。本文开发了一个神经普通微分方程网络,以从轨迹数据中学习哈密顿系统的动态。学识渊博的哈密顿模型用于合成基于能量的被动性控制器,并分析其\ emph {鲁棒性},以在学习模型及其\ emph {Safety}中对环境施加的约束。考虑到系统的所需参考路径,我们使用虚拟参考调查员扩展了设计,以实现跟踪控制。州长国家是一个调节点,沿参考路径移动,平衡系统能级,模型不确定性界限以及违反安全性的距离,以确保稳健性和安全性。我们的哈密顿动力学学习和跟踪控制技术在\修订后的{模拟的己谐和四型机器人}在混乱的3D环境中导航。
translated by 谷歌翻译
随着腿部机器人和嵌入式计算都变得越来越有能力,研究人员已经开始专注于这些机器人的现场部署。在非结构化环境中的强大自治需要对机器人周围的世界感知,以避免危害。但是,由于处理机车动力学所需的复杂规划人员和控制器,因此在网上合并在线的同时在线保持敏捷运动对腿部机器人更具挑战性。该报告将比较三种最新的感知运动方法,并讨论可以使用视觉来实现腿部自主权的不同方式。
translated by 谷歌翻译
对自动驾驶车辆的路径跟踪控制可以从深入学习中受益,以应对长期存在的挑战,例如非线性和不确定性。但是,深度神经控制器缺乏安全保证,从而限制了其实际使用。我们提出了一种新的学习方法的新方法,该方法几乎是在神经控制器下为系统设置的正向设置,以定量分析深神经控制器对路径跟踪的安全性。我们设计了基于抽样的学习程序,用于构建候选神经屏障功能,以及利用神经网络的鲁棒性分析的认证程序来确定完全满足屏障条件的区域。我们在学习和认证之间使用对抗性训练循环来优化几乎级词的功能。学习的障碍也可用于通过可及性分析来构建在线安全监视器。我们证明了我们的方法在量化各种模拟环境中神经控制器安全性方面的有效性,从简单的运动学模型到具有高保真车辆动力学模拟的TORCS模拟器。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
移动机器人的成功操作要求它们迅速适应环境变化。为了为移动机器人开发自适应决策工具,我们提出了一种新颖的算法,该算法将元强化学习(META-RL)与模型预测控制(MPC)相结合。我们的方法采用额外的元元素算法作为基线,以使用MPC生成的过渡样本来训练策略,当机器人检测到某些事件可以通过MPC有效处理的某些事件,并明确使用机器人动力学。我们方法的关键思想是以随机和事件触发的方式在元学习策略和MPC控制器之间进行切换,以弥补由有限的预测范围引起的次优MPC动作。在元测试期间,将停用MPC模块,以显着减少运动控制中的计算时间。我们进一步提出了一种在线适应方案,该方案使机器人能够在单个轨迹中推断并适应新任务。通过使用(i)障碍物的合成运动和(ii)现实世界的行人运动数据,使用非线性汽车样的车辆模型来证明我们方法的性能。模拟结果表明,我们的方法在学习效率和导航质量方面优于其他算法。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
Reinforcement Learning (RL) can solve complex tasks but does not intrinsically provide any guarantees on system behavior. For real-world systems that fulfill safety-critical tasks, such guarantees on safety specifications are necessary. To bridge this gap, we propose a verifiably safe RL procedure with probabilistic guarantees. First, our approach probabilistically verifies a candidate controller with respect to a temporal logic specification, while randomizing the controller's inputs within a bounded set. Then, we use RL to improve the performance of this probabilistically verified, i.e. safe, controller and explore in the same bounded set around the controller's input as was randomized over in the verification step. Finally, we calculate probabilistic safety guarantees with respect to temporal logic specifications for the learned agent. Our approach is efficient for continuous action and state spaces and separates safety verification and performance improvement into two independent steps. We evaluate our approach on a safe evasion task where a robot has to evade a dynamic obstacle in a specific manner while trying to reach a goal. The results show that our verifiably safe RL approach leads to efficient learning and performance improvements while maintaining safety specifications.
translated by 谷歌翻译
我们研究了目标稳定的问题,并在机器人和车辆中避免了强大的障碍物,这些障碍物仅用于实现实时定位的目的。由于障碍物引起的拓扑障碍,该问题尤其具有挑战性,这排除了能够同时稳定和避免障碍的平稳反馈控制器的存在。为了克服这个问题,我们开发了一个基于视觉的混合控制器,该控制器可以使用磁滞机制和数据辅助主管在两种不同的反馈定律之间切换。本文的主要创新是将合适的感知图纳入混合控制器。这些地图可以从从车辆中的摄像机获得的数据中学到,并通过卷积神经网络(CNN)训练。在此感知图上​​的合适假设下,我们就融合和避免障碍物的轨迹建立了对车辆轨​​迹的理论保证。此外,在不同的情况下,对基于视觉的混合控制器进行了数值测试,包括嘈杂的数据,失败的传感器以及带有遮挡的相机。
translated by 谷歌翻译