我们考虑以下学习问题:给定由未知非线性系统生成的输入和输出信号对(哪个未被假定是因果或时间不变),我们希望找到具有双曲线切线激活的连续反复性神经网络函数大致再现底层的I / O行为,高度置信度。利用较早的工作与匹配的输出衍生品达到给定的有限顺序,我们以熟悉的系统理论语言重构学习问题,并导出了在学习模型的超标范围内的超标范围的定量保证,样本大小,匹配的衍生数的数量,以及输入,输出和未知I / O映射的规律性属性。
translated by 谷歌翻译
本文介绍了一种拟合有限维欧几里得空间的沉浸式亚策略的方法。从环境空间到所需的子策略的重建映射是作为编码器的组成而实现的固定初始点。编码器为流量提供时间。编码器二进制图是通过经验风险最小化获得的,并且相对于给定的Encoder-Decoder映射的最小预期重建误差,多余的风险给出了高概率。拟议的方法是对苏斯曼的轨道定理的基本使用,该定理保证了重建图的图像确实包含在沉浸式的子手机中。
translated by 谷歌翻译
我们研究具有随机生成内部权重的回声状态网络的均匀近似。这些模型在训练过程中仅优化了读数权重,在学习动态系统方面取得了经验成功。我们通过证明它们在弱条件下是普遍的来解决这些模型的代表性。我们的主要结果为激活函数提供了足够的条件和内部权重的采样过程,因此回声状态网络可以近似具有高概率的任何连续的休闲时间不变的操作员。特别是,对于Relu激活,我们量化了足够常规运算符的回声状态网络的近似误差。
translated by 谷歌翻译
考虑基于相同的输入变量的同时学习大量响应函数的问题。训练数据包括从共同分布绘制的输入变量的单个独立随机样本以及相关的响应。将输入变量映射到称为特征空间的高维线性空间,并且响应函数被建模为映射特征的线性功能,通过普通最小二乘校准系数。我们通过在响应函数均匀地控制过度风险的收敛速度来提供最坏情况过度预测风险的收敛保证。允许特征图的尺寸倾向于与样本大小无穷大。响应功能的集合虽然可能是无限的,但应该具有有限的VAPNIK-Chervonenkis维度。在合理的计算时间内构建多个代理模型时,可以应用所派生的界限。
translated by 谷歌翻译
量化概率分布之间的异化的统计分歧(SDS)是统计推理和机器学习的基本组成部分。用于估计这些分歧的现代方法依赖于通过神经网络(NN)进行参数化经验变化形式并优化参数空间。这种神经估算器在实践中大量使用,但相应的性能保证是部分的,并呼吁进一步探索。特别是,涉及的两个错误源之间存在基本的权衡:近似和经验估计。虽然前者需要NN课程富有富有表现力,但后者依赖于控制复杂性。我们通过非渐近误差界限基于浅NN的基于浅NN的估计的估算权,重点关注四个流行的$ \ mathsf {f} $ - 分离 - kullback-leibler,chi squared,squared hellinger,以及总变异。我们分析依赖于实证过程理论的非渐近功能近似定理和工具。界限揭示了NN尺寸和样品数量之间的张力,并使能够表征其缩放速率,以确保一致性。对于紧凑型支持的分布,我们进一步表明,上述上三次分歧的神经估算器以适当的NN生长速率接近Minimax率 - 最佳,实现了对数因子的参数速率。
translated by 谷歌翻译
我们为特殊神经网络架构,称为运营商复发性神经网络的理论分析,用于近似非线性函数,其输入是线性运算符。这些功能通常在解决方案算法中出现用于逆边值问题的问题。传统的神经网络将输入数据视为向量,因此它们没有有效地捕获与对应于这种逆问题中的数据的线性运算符相关联的乘法结构。因此,我们介绍一个类似标准的神经网络架构的新系列,但是输入数据在向量上乘法作用。由较小的算子出现在边界控制中的紧凑型操作员和波动方程的反边值问题分析,我们在网络中的选择权重矩阵中促进结构和稀疏性。在描述此架构后,我们研究其表示属性以及其近似属性。我们还表明,可以引入明确的正则化,其可以从所述逆问题的数学分析导出,并导致概括属性上的某些保证。我们观察到重量矩阵的稀疏性改善了概括估计。最后,我们讨论如何将运营商复发网络视为深度学习模拟,以确定诸如用于从边界测量的声波方程中重建所未知的WAVESTED的边界控制的算法算法。
translated by 谷歌翻译
This paper investigates the stability of deep ReLU neural networks for nonparametric regression under the assumption that the noise has only a finite p-th moment. We unveil how the optimal rate of convergence depends on p, the degree of smoothness and the intrinsic dimension in a class of nonparametric regression functions with hierarchical composition structure when both the adaptive Huber loss and deep ReLU neural networks are used. This optimal rate of convergence cannot be obtained by the ordinary least squares but can be achieved by the Huber loss with a properly chosen parameter that adapts to the sample size, smoothness, and moment parameters. A concentration inequality for the adaptive Huber ReLU neural network estimators with allowable optimization errors is also derived. To establish a matching lower bound within the class of neural network estimators using the Huber loss, we employ a different strategy from the traditional route: constructing a deep ReLU network estimator that has a better empirical loss than the true function and the difference between these two functions furnishes a low bound. This step is related to the Huberization bias, yet more critically to the approximability of deep ReLU networks. As a result, we also contribute some new results on the approximation theory of deep ReLU neural networks.
translated by 谷歌翻译
消息传递神经网络(MPNN)自从引入卷积神经网络以泛滥到图形结构的数据以来,人们的受欢迎程度急剧上升,现在被认为是解决各种以图形为中心的最先进的工具问题。我们研究图形分类和回归中MPNN的概括误差。我们假设不同类别的图是从不同的随机图模型中采样的。我们表明,当在从这种分布中采样的数据集上训练MPNN时,概括差距会增加MPNN的复杂性,并且不仅相对于训练样本的数量,而且还会减少节点的平均数量在图中。这表明,只要图形很大,具有高复杂性的MPNN如何从图形的小数据集中概括。概括结合是从均匀收敛结果得出的,该结果表明,应用于图的任何MPNN近似于该图离散的几何模型上应用的MPNN。
translated by 谷歌翻译
众所周知,进食前馈神经网络的学习速度很慢,并且在深度学习应用中呈现了几十年的瓶颈。例如,广泛用于训练神经网络的基于梯度的学习算法在所有网络参数都必须迭代调整时往往会缓慢起作用。为了解决这个问题,研究人员和从业人员都尝试引入随机性来减少学习要求。基于Igelnik和Pao的原始结构,具有随机输入层的重量和偏见的单层神经网络在实践中取得了成功,但是缺乏必要的理论理由。在本文中,我们开始填补这一理论差距。我们提供了一个(校正的)严格证明,即Igelnik和PAO结构是连续函数在紧凑型域上连续函数的通用近似值,并且近似错误渐近地衰减,例如$ o(1/\ sqrt {n})网络节点。然后,我们将此结果扩展到非反应设置,证明人们可以在$ n $的情况下实现任何理想的近似误差,而概率很大。我们进一步调整了这种随机神经网络结构,以近似欧几里得空间的平滑,紧凑的亚曼叶量的功能,从而在渐近和非催化形式的理论保证中提供了理论保证。最后,我们通过数值实验说明了我们在歧管上的结果。
translated by 谷歌翻译
在本文中,我们通过任意大量的隐藏层研究了全连接的前馈深度Relu Ann,我们证明了在假设不正常化的概率密度函数下,在训练中具有随机初始化的GD优化方法的风险的融合在考虑的监督学习问题的输入数据的概率分布是分段多项式,假设目标函数(描述输入数据与输出数据之间的关系)是分段多项式,并且在假设风险函数下被认为的监督学习问题至少承认至少一个常规全球最低限度。此外,在浅句的特殊情况下只有一个隐藏的层和一维输入,我们还通过证明对每个LipsChitz连续目标功能的培训来验证这种假设,风险景观中存在全球最小值。最后,在具有Relu激活的深度广域的训练中,我们还研究梯度流(GF)差分方程的解决方案,并且我们证明每个非发散的GF轨迹会聚在临界点的多项式收敛速率(在限制意义上FR \'ECHET子提让性)。我们的数学融合分析造成了来自真实代数几何的工具,例如半代数函数和广义Kurdyka-Lojasiewicz不等式,从功能分析(如Arzel \)Ascoli定理等工具,在来自非本地结构的工具中作为限制FR \'echet子分子的概念,以及具有固定架构的浅印刷ANN的实现功能的事实形成由Petersen等人显示的连续功能集的封闭子集。
translated by 谷歌翻译
神经网络理论中最有影响力的结果之一是通用近似定理[1,2,3],其指出,连续函数可以通过单隐藏的层前馈神经网络近似地近似于任意精度。本文的目的是在这种精神上建立一个结果,用于近似通用离散时间线性动力系统 - 包括时变系统 - 通过经常性的神经网络(RNN)。对于线性时间不变(LTI)系统的子类,我们设计了该陈述的定量版本。具体而言,根据[4],通过公制熵测量所考虑的LTI系统的复杂性,我们表明RNN可以最佳地学习 - 或识别系统理论Parlance - 稳定的LTI系统。对于通过差分方程表征其输入输出关系的LTI系统,这意味着RNN可以以度量熵最佳方式从输入输出迹线中学习差分方程。
translated by 谷歌翻译
在非参数回归设置中,我们构建了一个估计器,该估计器是一个连续的函数,以高概率插值数据点,同时在H \ h \'较大级别的平均平方风险下达到最小的最佳速率,以适应未知的平滑度。
translated by 谷歌翻译
我们研究了广义熵的连续性属性作为潜在的概率分布的函数,用动作空间和损失函数定义,并使用此属性来回答统计学习理论中的基本问题:各种学习方法的过度风险分析。我们首先在几种常用的F分歧,Wassersein距离的熵差异导出了两个分布的熵差,这取决于动作空间的距离和损失函数,以及由熵产生的Bregman发散,这也诱导了两个分布之间的欧几里德距离方面的界限。对于每个一般结果的讨论给出了示例,使用现有的熵差界进行比较,并且基于新结果导出新的相互信息上限。然后,我们将熵差异界限应用于统计学习理论。结果表明,两种流行的学习范式,频繁学习和贝叶斯学习中的过度风险都可以用不同形式的广义熵的连续性研究。然后将分析扩展到广义条件熵的连续性。扩展为贝叶斯决策提供了不匹配的分布来提供性能范围。它也会导致第三个划分的学习范式的过度风险范围,其中决策规则是在经验分布的预定分布家族的预测下进行最佳设计。因此,我们通过广义熵的连续性建立了统计学习三大范式的过度风险分析的统一方法。
translated by 谷歌翻译
我们在使用函数近似的情况下,在使用最小的Minimax方法估算这些功能时,使用功能近似来实现函数近似和$ q $ functions的理论表征。在各种可靠性和完整性假设的组合下,我们表明Minimax方法使我们能够实现重量和质量功能的快速收敛速度,其特征在于关键的不平等\ citep {bartlett2005}。基于此结果,我们分析了OPE的收敛速率。特别是,我们引入了新型的替代完整性条件,在该条件下,OPE是可行的,我们在非尾部环境中以一阶效率提出了第一个有限样本结果,即在领先期限中具有最小的系数。
translated by 谷歌翻译
非线性自适应控制理论中的一个关键假设是系统的不确定性可以在一组已知基本函数的线性跨度中表示。虽然该假设导致有效的算法,但它将应用限制为非常特定的系统类别。我们介绍一种新的非参数自适应算法,其在参数上学习无限尺寸密度,以取消再现内核希尔伯特空间中的未知干扰。令人惊讶的是,所产生的控制输入承认,尽管其底层无限尺寸结构,但是尽管它的潜在无限尺寸结构实现了其实施的分析表达。虽然这种自适应输入具有丰富和富有敏感性的 - 例如,传统的线性参数化 - 其计算复杂性随时间线性增长,使其比其参数对应力相对较高。利用随机傅里叶特征的理论,我们提供了一种有效的随机实现,该实现恢复了经典参数方法的复杂性,同时可透明地保留非参数输入的表征性。特别地,我们的显式范围仅取决于系统的基础参数,允许我们所提出的算法有效地缩放到高维系统。作为该方法的说明,我们展示了随机近似算法学习由牛顿重力交互的十点批量组成的60维系统的预测模型的能力。
translated by 谷歌翻译
近年来,生成的对抗性网络(GANS)已经证明了令人印象深刻的实验结果,同时只有一些作品促进了统计学习理论。在这项工作中,我们提出了一种用于生成对抗性学习的无限尺寸理论框架。假设统一界限的$ k $-times $ \ alpha $ -h \“较旧的可分辨率和统一的正密度,我们表明Rosenblatt的转换引起了最佳发电机,可在$ \ alpha $的假设空间中可实现H \“较旧的微分发电机。通过一致的鉴别者假设空间的定义,我们进一步表明,在我们的框架中,由发电机引起的分布与来自对手学习过程的分布之间的jensen-shannon发散,并且数据生成分布会聚到零。在足够严格的规律性假设下对数据产生过程密度的假设,我们还基于浓度和链接提供会聚率。
translated by 谷歌翻译
这项工作解决了通过顶点之间的通信学习网络的问题。顶点之间的通信以扰动对测量的形式呈现。我们研究了从均匀ergodic随机图工艺(简称RGPS的RGPS)中汲取样本的场景,这为感兴趣的问题提供了自然的数学上下文。对于二进制分类问题,我们获得的结果使统一的学习能力作为最坏情况的理论限制。我们介绍了结构改造的复杂性,它自然地融合到VC理论中,以至于第一刻。凭借Martingale方法和Marton的耦合,我们建立了统一收敛的尾部,并为经验风险最小化提供了一致性保证。在这项工作中使用的技术来获得高概率界限对于具有和没有网络结构的其他混合过程是独立的兴趣。
translated by 谷歌翻译
我们研究基于度量传输的非参数密度估计器的收敛性和相关距离。这些估计量代表了利息的度量,作为传输图下选择的参考分布的推动力,其中地图是通过最大似然目标选择(等效地,将经验性的kullback-leibler损失)或其受惩罚版本选择。我们通过将M估计的技术与基于运输的密度表示的分析性能相结合,为一般惩罚措施估计量的一般类别的措施运输估计器建立了浓度不平等。然后,我们证明了我们的理论对三角形knothe-rosenblatt(kr)在$ d $维单元方面的运输的含义,并表明该估计器的惩罚和未化的版本都达到了Minimax最佳收敛速率,超过了H \ \ \'“较旧的密度类别。具体来说,我们建立了在有限的h \“较旧型球上,未确定的非参数最大似然估计,然后在某些sobolev-penalate的估计器和筛分的小波估计器中建立了最佳速率。
translated by 谷歌翻译
The fundamental learning theory behind neural networks remains largely open. What classes of functions can neural networks actually learn? Why doesn't the trained network overfit when it is overparameterized?In this work, we prove that overparameterized neural networks can learn some notable concept classes, including two and three-layer networks with fewer parameters and smooth activations. Moreover, the learning can be simply done by SGD (stochastic gradient descent) or its variants in polynomial time using polynomially many samples. The sample complexity can also be almost independent of the number of parameters in the network.On the technique side, our analysis goes beyond the so-called NTK (neural tangent kernel) linearization of neural networks in prior works. We establish a new notion of quadratic approximation of the neural network (that can be viewed as a second-order variant of NTK), and connect it to the SGD theory of escaping saddle points.
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译