在本报告中,我们提出了一个深入的学习框架,称为电子相关潜在神经网络(ECPNN),可以学习简洁和紧凑的潜在功能。这些功能可以有效地描述许多电子原子中电子之间的复杂瞬时空间相关性。ECPNN以无监督的方式培训,从完全配置相互作用(FCI)一电子密度函数的有限信息,在预定义的准确性范围内。使用ECPNN生成的有效相关势函数,我们可以在与FCI能量相比时预测每个研究的原子系统的总能量具有显着的精度。
translated by 谷歌翻译
机器学习,特别是深度学习方法在许多模式识别和数据处理问题,游戏玩法中都优于人类的能力,现在在科学发现中也起着越来越重要的作用。机器学习在分子科学中的关键应用是通过使用密度函数理论,耦合群或其他量子化学方法获得的电子schr \“ odinger方程的Ab-Initio溶液中的势能表面或力场。我们回顾了一种最新和互补的方法:使用机器学习来辅助从第一原理中直接解决量子化学问题。具体来说,我们专注于使用神经网络ANSATZ功能的量子蒙特卡洛(QMC)方法,以解决电子SCHR \ “ Odinger方程在第一和第二量化中,计算场和激发态,并概括多个核构型。与现有的量子化学方法相比,这些新的深QMC方法具有以相对适度的计算成本生成高度准确的Schr \“ Odinger方程的溶液。
translated by 谷歌翻译
深度神经网络非常成功,因为高度准确的波函数ANS \“ ATZE用于分子基础状态的变异蒙特卡洛计算。我们提出了一个这样的Ansatz,Ferminet的扩展,以计算定期汉密尔顿人的基础状态,并研究均质电子气。小电子气体系统基态能量的费米特计算与先前的启动器完全构型相互作用量子蒙特卡洛和扩散蒙特卡洛计算非常吻合。我们研究了自旋偏振均质的均质电子气体,并证明了这一点相同神经网络架构能够准确地代表离域的费米液态和局部的晶体状态。没有给出网络,没有\ emph {a emph {a a a emph {a a emph {a e emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {a emph {并自发打破对称性以产生结晶蛋白E基态在低密度下。
translated by 谷歌翻译
在这项工作中,我们考虑了限制在可渗透球体内部的氢原子。限制电位由深度$ \ omega_0 $,width $ \ sigma $的倒哥斯函数描述,并以$ r_c $为中心。特别是,该模型已用于研究$ C_ {60} $ Fullerene中的原子。对于角动量的最低值$ l = 0,1,2 $,系统的光谱是参数的函数($ \ omega_0,\ sigma,r_c $)是使用三种不同的数值方法计算的:(i) Lagrange-mesh方法,(ii)第四阶有限差和(iii)有限元方法。显示了不少于11个重要数字的混凝土结果。同样,在Lagrange-Mesh方法中,分别提出了相应的本征函数和前六个州的$ r $的期望值,分别介绍了$ s,p $和$ d $ symmetries。我们的准确能量也被视为初始数据,以训练人工神经网络。它产生有效的数值插值。目前的数值结果改善并扩展了文献中报告的结果。
translated by 谷歌翻译
我们开发了一种组合量子蒙特卡罗的准确性在描述与机器学习电位(MLP)的效率描述电子相关性的技术。我们使用内核线性回归与肥皂(平滑的重叠原子位置)方法结合使用,以非常有效的方式在此实现。关键成分是:i)一种基于最远点采样的稀疏技术,确保我们的MLP的一般性和可转换性和II)所谓的$ \ Delta $ -Learning,允许小型训练数据集,这是一种高度准确的基本属性但是计算地要求计算,例如基于量子蒙特卡罗的计算。作为第一个应用,我们通过强调这一非常高精度的重要性,展示了高压氢气液体过渡的基准研究,并显示了我们的MLP的高精度的重要性,实验室在实验中难以进行实验,以及实验理论仍然远非结论。
translated by 谷歌翻译
分子或材料的电子密度最近作为机器学习模型的目标数量受到了主要关注。一种自然选择,用于构建可传递可转移和线性缩放预测的模型是使用类似于通常用于密度拟合近似值的常规使用的原子基础来表示标量场。但是,基础的非正交性对学习练习构成了挑战,因为它需要立即考虑所有原子密度成分。我们设计了一种基于梯度的方法,可以直接在优化且高度稀疏的特征空间中最大程度地减少回归问题的损失函数。这样,我们克服了与采用以原子为中心的模型相关的限制,以在任意复杂的数据集上学习电子密度,从而获得极为准确的预测。增强的框架已在32个液体水的32个周期细胞上进行测试,具有足够的复杂性,需要在准确性和计算效率之间取得最佳平衡。我们表明,从预测的密度开始,可以执行单个Kohn-Sham对角度步骤,以访问总能量组件,而总能量组件仅针对参考密度函数计算,而误差仅为0.1 MEV/ATOM。最后,我们测试了高度异构QM9基准数据集的方法,这表明训练数据的一小部分足以在化学精度内得出地面总能量。
translated by 谷歌翻译
Physics-informed neural networks have been widely applied to learn general parametric solutions of differential equations. Here, we propose a neural network to discover parametric eigenvalue and eigenfunction surfaces of quantum systems. We apply our method to solve the hydrogen molecular ion. This is an ab-initio deep learning method that solves the Schrodinger equation with the Coulomb potential yielding realistic wavefunctions that include a cusp at the ion positions. The neural solutions are continuous and differentiable functions of the interatomic distance and their derivatives are analytically calculated by applying automatic differentiation. Such a parametric and analytical form of the solutions is useful for further calculations such as the determination of force fields.
translated by 谷歌翻译
对称考虑对于用于提供原子配置的有效数学表示的主要框架的核心,然后在机器学习模型中用于预测与每个结构相关的特性。在大多数情况下,模型依赖于以原子为中心的环境的描述,并且适合于学习可以分解成原子贡献的原子特性或全局观察到。然而,许多与量子机械计算相关的数量 - 最值得注意的是,以原子轨道基础写入时的单粒子哈密顿矩阵 - 与单个中心无关,但结构中有两个(或更多个)原子。我们讨论一系列结构描述符,以概括为N中心案例的非常成功的原子居中密度相关特征,特别是如何应用这种结构,以有效地学习(有效)单粒子汉密尔顿人的矩阵元素以原子为中心的轨道基础。这些N中心的特点是完全的,不仅在转换和旋转方面,而且还就与原子相关的指数的排列而言 - 并且适合于构建新类的对称适应的机器学习模型分子和材料的性质。
translated by 谷歌翻译
神经网络和量子蒙特卡罗方法的组合作为前进的高精度电子结构计算的道路出现。以前的建议具有组合具有反对称层的增强的神经网络层,以满足电子波技的反对称要求。但是,迄今为止,如果可以代表物理兴趣的反对称功能,则不清楚尚不清楚,并且难以测量反对称层的富有效果。这项工作通过将明确的防视通用神经网络层作为诊断工具引入明确的防视通用神经网络层来解决这个问题。我们首先介绍一种通用的反对二手(GA)层,我们用于更换称为FEMINET的高精度ANSATZ的整个防反对二层层。我们证明所得到的FERMINET-GA架构可以有效地产生小型系统的确切地位能量。然后,我们考虑一种分解的反对称(FA)层,其通过替换具有反对称神经网络的产品的决定因素的产品更易于推广FERMINET。有趣的是,由此产生的FERMINET-FA架构并不优于FERMINET。这表明抗体产品的总和是Ferminet架构的关键限制方面。为了进一步探索这一点,我们研究了称为全决定性模式的FERMINET的微小修改,其用单一组合的决定蛋白取代了决定因素的每个产物。完整的单决定性Ferminet封闭标准单决定性Ferminet和Ferminet-Ga之间的大部分间隙。令人惊讶的是,在4.0 BoHR的解离键长度的氮素分子上,全单决定性Ferminet可以显着优于标准的64个决定性Ferminet,从而在0.4千卡/摩尔中获得最佳可用计算基准的能量。
translated by 谷歌翻译
最近,机器学习(ML)电位的发展使得以量子力学(QM)模型的精度进行大规模和长期分子模拟成为可能。但是,对于高水平的QM方法,例如在元gga级和/或具有精确交换的密度函数理论(DFT),量子蒙特卡洛等,生成足够数量的用于训练的数据由于其高成本,计算挑战性。在这项工作中,我们证明了基于ML的DFT模型Deep Kohn-Sham(Deepks)可以在很大程度上缓解这个问题。 DeepKS采用计算高效的基于神经网络的功能模型来构建在廉价DFT模型上添加的校正项。在训练后,DeepKs提供了与高级QM方法相比,具有紧密匹配的能量和力,但是所需的训练数据的数量是比训练可靠的ML潜力所需的数量级要小。因此,DeepKs可以用作昂贵的QM型号和ML电位之间的桥梁:一个人可以生成相当数量的高准确性QM数据来训练DeepKs模型,然后使用DeepKs型号来标记大量的配置以标记训练ML潜力。该周期系统方案在DFT软件包算盘中实施,该计划是开源的,可以在各种应用程序中使用。
translated by 谷歌翻译
在多种重要应用中,获得电子系统的准确地面和低洼激发态至关重要。一种用于求解对大型系统缩放的Schr \“ Odinger方程的方法是变异量蒙特卡洛(QMC)。最近引入的深层QMC方法使用以深神经网络代表的Ansatzes,并生成几乎精确的分子解决方案的分子解决方案最多包含几十个电子,并有可能扩展到更大的系统,而其他高度准确的方法不可行。在本文中,我们扩展了一个这样的Ansatz(Paulinet)来计算电子激发态。我们在各种方法上演示了我们的方法小原子和分子,并始终达到低洼状态的高精度。为了突出该方法的潜力,我们计算了较大的苯分子的第一个激发态,以及乙烯的圆锥形交集,Paulinet匹配的结果更昂贵高级方法。
translated by 谷歌翻译
我们为致密氢的方程式提供了基于深层生成模型的变化自由能方法。我们采用归一化流网络来对质子玻尔兹曼分布和费米子神经网络进行建模,以在给定的质子位置对电子波函数进行建模。通过共同优化两个神经网络,我们达到了与先前的电子蒙特卡洛计算相当的变异自由能。我们的结果表明,与先前的蒙特卡洛和从头算分子动力学数据相比,行星条件下的氢甚至更浓密,这远离经验化学模型的预测。获得可靠的密集氢状态方程,尤其是直接进入熵和自由能,为行星建模和高压物理学研究开辟了新的机会。
translated by 谷歌翻译
In my previous article I mentioned for the first time that a classical neural network may have quantum properties as its own structure may be entangled. The question one may ask now is whether such a quantum property can be used to entangle other systems? The answer should be yes, as shown in what follows.
translated by 谷歌翻译
我们设计了一种新型的前馈神经网络。相对于统一组$ u(n)$,它是均等的。输入和输出可以是$ \ mathbb {c}^n $的向量,并具有任意尺寸$ n $。我们的实施中不需要卷积层。我们避免因傅立叶样转换中的高阶项截断而导致错误。可以使用简单的计算有效地完成每一层的实现。作为概念的证明,我们已经对原子运动动力学的预测给出了经验结果,以证明我们的方法的实用性。
translated by 谷歌翻译
Kohn-Sham规则器(KSR)是一种机器学习方法,可在可区分KOHN-MAMH密度功能理论框架内优化物理信息的交换相关功能。通过培训原子系统培训和均衡时分子测试评估KSR的普遍性。我们提出了具有本地,半焦点和非识别功能的ksr的旋转极化版本,用于交换相关功能。我们半象征近似的泛化误差与其他可分辨率的方法相当。我们的非识别功能通过预测测试系统的地面能量来实现任何现有的机器学习功能,其具有2.7毫巴的平均绝对误差。
translated by 谷歌翻译
电子密度$ \ rho(\ vec {r})$是用密度泛函理论(dft)计算地面能量的基本变量。除了总能量之外,$ \ rho(\ vec {r})$分布和$ \ rho(\ vec {r})$的功能通常用于捕获电子规模以功能材料和分子中的关键物理化学现象。方法提供对$ \ rho(\ vec {r})的可紊乱系统,其具有少量计算成本的复杂无序系统可以是对材料相位空间的加快探索朝向具有更好功能的新材料的逆设计的游戏更换者。我们为预测$ \ rho(\ vec {r})$。该模型基于成本图形神经网络,并且在作为消息传递图的一部分的特殊查询点顶点上预测了电子密度,但仅接收消息。该模型在多个数据组中进行测试,分子(QM9),液体乙烯碳酸酯电解质(EC)和Lixniymnzco(1-Y-Z)O 2锂离子电池阴极(NMC)。对于QM9分子,所提出的模型的准确性超过了从DFT获得的$ \ Rho(\ vec {r})$中的典型变异性,以不同的交换相关功能,并显示超出最先进的准确性。混合氧化物(NMC)和电解质(EC)数据集更好的精度甚至更好。线性缩放模型同时探测成千上万点的能力允许计算$ \ Rho(\ vec {r})$的大型复杂系统,比DFT快于允许筛选无序的功能材料。
translated by 谷歌翻译
量子状态的神经网络表示的变异优化已成功地用于解决相互作用的费米子问题。尽管发展迅速,但在考虑大规模分子时会出现重大的可伸缩性挑战,这些分子与非局部相互作用的量子自旋汉密尔顿人相对应,这些量子旋转汉密尔顿人由数千甚至数百万的保利操作员组成。在这项工作中,我们引入了可扩展的并行化策略,以改善基于神经网络的量子量蒙特卡洛计算,用于AB-Initio量子化学应用。我们建立了由GPU支持的局部能量并行性,以计算潜在复杂分子的哈密顿量的优化目标。使用自回旋抽样技术,我们证明了实现CCSD基线目标能量所需的壁锁定时间的系统改进。通过将最终的旋转汉顿量的结构适应自回归抽样顺序,进一步提高了性能。与经典的近似方法相比,该算法实现了有希望的性能,并且比现有基于神经网络的方法具有运行时间和可伸缩性优势。
translated by 谷歌翻译
这项工作介绍了神经性等因素的外部潜力(NEQUIP),E(3) - 用于学习分子动力学模拟的AB-INITIO计算的用于学习网状体电位的e(3)的神经网络方法。虽然大多数当代对称的模型使用不变的卷曲,但仅在标量上采取行动,Nequip采用E(3) - 几何张量的相互作用,举起Quivariant卷曲,导致了更多的信息丰富和忠实的原子环境代表。该方法在挑战和多样化的分子和材料集中实现了最先进的准确性,同时表现出显着的数据效率。 Nequip优先于现有型号,最多三个数量级的培训数据,挑战深度神经网络需要大量培训套装。该方法的高数据效率允许使用高阶量子化学水平的理论作为参考的精确潜力构建,并且在长时间尺度上实现高保真分子动力学模拟。
translated by 谷歌翻译
Machine learning has emerged recently as a powerful tool for predicting properties of quantum many-body systems. For many ground states of gapped Hamiltonians, generative models can learn from measurements of a single quantum state to reconstruct the state accurately enough to predict local observables. Alternatively, kernel methods can predict local observables by learning from measurements on different but related states. In this work, we combine the benefits of both approaches and propose the use of conditional generative models to simultaneously represent a family of states, by learning shared structures of different quantum states from measurements. The trained model allows us to predict arbitrary local properties of ground states, even for states not present in the training data, and without necessitating further training for new observables. We numerically validate our approach (with simulations of up to 45 qubits) for two quantum many-body problems, 2D random Heisenberg models and Rydberg atom systems.
translated by 谷歌翻译
从实验或模拟数据中学习对的相互作用对于分子模拟引起了极大的兴趣。我们提出了一种使用可区分的模拟(DIFFSIM)从数据中学习对相互作用的通用随机方法。 DIFFSIM通过分子动力学(MD)模拟定义了基于结构可观察物(例如径向分布函数)的损耗函数。然后,使用反向传播直接通过随机梯度下降直接学习相互作用电位,以通过MD模拟计算相互作用势的结构损耗度量标准的梯度。这种基于梯度的方法是灵活的,可以配置以同时模拟和优化多个系统。例如,可以同时学习不同温度或不同组合物的潜力。我们通过从径向分布函数中恢复简单的对电位(例如Lennard-Jones系统)来证明该方法。我们发现,与迭代Boltzmann倒置相比,DIFFSIM可用于探测配对电位的更广泛的功能空间。我们表明,我们的方法可用于同时拟合不同组成和温度下的模拟电位,以提高学习势的可传递性。
translated by 谷歌翻译