我们考虑训练在延迟反馈(\ emph {df Learning})下培训二进制分类器。例如,在在线广告中的转换预测中,我们最初收到单击广告但没有购买商品的负样本;随后,其中一些样本购买了一个物品,然后更改为正面。在DF学习的环境中,我们会随着时间的推移观察样本,然后在某个时候学习分类器。我们最初收到负样本;随后,其中一些样本变为正变为正。在各种现实世界中,例如在线广告,在首次单击后很长时间进行用户操作,可以想象此问题。由于反馈的延迟,正对正和负样品的天真分类返回偏置分类器。一种解决方案是使用已正确标记这些样品的样品超过一定时间窗口的样品。但是,现有研究报告说,仅根据时间窗口假设使用所有样本的子集的性能不佳,并且使用所有样本以及时间窗口假设可以提高经验性能。我们扩展了这些现有研究,并提出了一种具有无偏见和凸经验风险的方法,该方法是根据时间窗口假设在所有样本中构建的。为了证明所提出的方法的合理性,我们为在线广告中的真实流量日志数据集提供了合成和开放数据集的实验结果。
translated by 谷歌翻译
从积极和未标记的(PU)数据中学习是各种应用中的重要问题。最近PU分类的大多数方法假设训练未标记的数据集中的课程(正样本的比率)与测试数据的类别相同,这在许多实际情况下不存在。此外,我们通常不知道培训和测试数据的类别,因此我们没有关于如何在没有它们的情况下训练分类器的线索。为了解决这些问题,我们提出了一种基于密度比估计的新型PU分类方法。我们所提出的方法的显着优势在于它不需要训练阶段中的类前沿;先前的换档仅在测试阶段结合。理论上,理论地证明我们提出的方法和实验证明其有效性。
translated by 谷歌翻译
近年来,有监督的深度学习取得了巨大的成功,从大量完全标记的数据中,对预测模型进行了培训。但是,实际上,标记这样的大数据可能非常昂贵,甚至出于隐私原因甚至可能是不可能的。因此,在本文中,我们旨在学习一个无需任何类标签的准确分类器。更具体地说,我们考虑了多组未标记的数据及其类先验的情况,即每个类别的比例。在此问题设置下,我们首先得出了对分类风险的无偏估计量,可以从给定未标记的集合中估算,并理论上分析了学习分类器的概括误差。然后,我们发现获得的分类器往往会导致过度拟合,因为其经验风险在训练过程中呈负面。为了防止过度拟合,我们进一步提出了一个部分风险正规化,该风险正规化在某些级别上保持了未标记的数据集和类方面的部分风险。实验表明,我们的方法有效地减轻了过度拟合和优于从多个未标记集中学习的最先进方法。
translated by 谷歌翻译
为了减轻二进制分类中培训有效二进制分类器的数据要求,已经提出了许多弱监督的学习设置。其中,当由于隐私,机密性或安全原因无法访问时,使用成对但不是尖标签的一些考虑。然而,作为一对标签表示两个数据点是否共享尖点标签,如果任一点同样可能是正的或负数,则不能容易地收集。因此,在本文中,我们提出了一种名为成对比较(PCOMP)分类的新颖设置,在那里我们只有一对未标记的数据,我们知道一个人比另一个更有可能是积极的。首先,我们提供了PCOMP数据生成过程,通过理论上保证导出了无偏的风险估计器(URE),并进一步提高了URE使用校正功能。其次,我们将PCOMP分类链接到嘈杂的标签学习,通过强加一致性正规化来开发渐进式,并改善它。最后,我们通过实验证明了我们的方法的有效性,这表明PCOMP是一种有价值的,实际上有用的成对监督类型,除了一对标签。
translated by 谷歌翻译
标准均匀收敛导致在假设类别上预期损失的概括差距。对风险敏感学习的出现需要超出预期损失分布的功能的概括保证。虽然先前的工作专门从事特定功能的均匀收敛,但我们的工作为一般的H \'较旧风险功能提供了统一的收敛,累积分配功能(CDF)的亲密关系(CDF)需要接近风险。我们建立了第一个统一的融合估计损失分布的CDF的结果,可以保证在所有H \“较旧的风险功能和所有假设上)同时保持。因此,我们获得了实现经验风险最小化的许可,我们开发了基于梯度的实用方法,以最大程度地减少失真风险(广泛研究的H \'H \'较旧风险涵盖了光谱风险,包括平均值,有条件价值,风险的有条件价值,累积前景理论风险和累积前景理论风险,以及其他)并提供融合保证。在实验中,我们证明了学习程序的功效,这是在均匀收敛结果和具有深层网络的高维度的设置中。
translated by 谷歌翻译
In this paper, we theoretically study the problem of binary classification in the presence of random classification noise -the learner, instead of seeing the true labels, sees labels that have independently been flipped with some small probability. Moreover, random label noise is class-conditional -the flip probability depends on the class. We provide two approaches to suitably modify any given surrogate loss function. First, we provide a simple unbiased estimator of any loss, and obtain performance bounds for empirical risk minimization in the presence of iid data with noisy labels. If the loss function satisfies a simple symmetry condition, we show that the method leads to an efficient algorithm for empirical minimization. Second, by leveraging a reduction of risk minimization under noisy labels to classification with weighted 0-1 loss, we suggest the use of a simple weighted surrogate loss, for which we are able to obtain strong empirical risk bounds. This approach has a very remarkable consequence -methods used in practice such as biased SVM and weighted logistic regression are provably noise-tolerant. On a synthetic non-separable dataset, our methods achieve over 88% accuracy even when 40% of the labels are corrupted, and are competitive with respect to recently proposed methods for dealing with label noise in several benchmark datasets.
translated by 谷歌翻译
当我们配对输入$ x $和输出$ y $的培训数据时,普通监督学习很有用。但是,这种配对数据在实践中可能很难收集。在本文中,我们考虑了当我们没有配对数据时预测$ y $的任务,但是我们有两个单独的独立数据集,分别为$ x $,每个$ $ $ y $ y $ y $ y $ y $ y $ u $ u $ u $ $,也就是说,我们有两个数据集$ s_x = \ {(x_i,u_i)\} $和$ s_y = \ {(u'_j,y'_jj)\} $。一种天真的方法是使用$ s_x $从$ x $中预测$ u $,然后使用$ s_y $从$ u $ $ y $预测$ y $,但我们表明这在统计上不一致。此外,预测$ u $比预测$ y $在实践中更困难,例如$ u $具有更高的维度。为了避免难度,我们提出了一种避免预测$ u $的新方法,但直接通过培训$ f(x)$ $ s_ {x} $来预测$ y = f(x)$,以预测$ h(u)$经过$ s_ {y} $的培训,以近似$ y $。我们证明了我们方法的统计一致性和误差范围,并通过实验确认其实际实用性。
translated by 谷歌翻译
部分标签学习是一种弱监督的学习,不精确的标签,在这里,每个训练示例,我们都有一组候选标签而不是一个真正的标签。最近,在候选标签集的不同一代模型下提出了部分标签学习的各种方法。然而,这些方法需要在生成模型上具有相对强烈的分布假设。当假设不保持时,理论上不保证该方法的性能。在本文中,我们提出了部分标签对适用权的概念。我们表明,这种适当的部分标签学习框架包括许多以前的部分标签学习设置作为特殊情况。然后,我们派生了统一的分类风险估计。我们证明我们的估算器是通过获取其估计误差绑定的风险态度。最后,我们通过实验验证了算法的有效性。
translated by 谷歌翻译
我们考虑在有条件的力矩限制下学习因果关系。与无条件力矩限制下的因果推断不同,有条件的力矩限制对因果推断构成了严重的挑战,尤其是在高维环境中。为了解决这个问题,我们提出了一种方法,该方法使用条件密度比估计器将有条件的力矩限制通过重要性加权转换为无条件的力矩限制。使用这种转换,我们成功估计了条件矩限制下定义的非参数功能。我们提出的框架是一般的,可以应用于包括神经网络在内的广泛方法。我们分析估计误差,为我们提出的方法提供理论支持。在实验中,我们确认了我们提出的方法的健全性。
translated by 谷歌翻译
监督学习的关键假设是培训和测试数据遵循相同的概率分布。然而,这种基本假设在实践中并不总是满足,例如,由于不断变化的环境,样本选择偏差,隐私问题或高标签成本。转移学习(TL)放松这种假设,并允许我们在分销班次下学习。通常依赖于重要性加权的经典TL方法 - 基于根据重要性(即测试过度训练密度比率)的训练损失培训预测器。然而,由于现实世界机器学习任务变得越来越复杂,高维和动态,探讨了新的新方法,以应对这些挑战最近。在本文中,在介绍基于重要性加权的TL基础之后,我们根据关节和动态重要预测估计审查最近的进步。此外,我们介绍一种因果机制转移方法,该方法包含T1中的因果结构。最后,我们讨论了TL研究的未来观点。
translated by 谷歌翻译
In this paper, we study a classification problem in which sample labels are randomly corrupted. In this scenario, there is an unobservable sample with noise-free labels. However, before being observed, the true labels are independently flipped with a probability ρ ∈ [0, 0.5), and the random label noise can be class-conditional. Here, we address two fundamental problems raised by this scenario. The first is how to best use the abundant surrogate loss functions designed for the traditional classification problem when there is label noise. We prove that any surrogate loss function can be used for classification with noisy labels by using importance reweighting, with consistency assurance that the label noise does not ultimately hinder the search for the optimal classifier of the noise-free sample. The other is the open problem of how to obtain the noise rate ρ. We show that the rate is upper bounded by the conditional probability P ( Ŷ |X) of the noisy sample. Consequently, the rate can be estimated, because the upper bound can be easily reached in classification problems. Experimental results on synthetic and real datasets confirm the efficiency of our methods.
translated by 谷歌翻译
数据驱动决策的经验风险最小化方法假设我们可以从与我们想要在下面部署的条件相同的条件下绘制的数据中学习决策规则。但是,在许多设置中,我们可能会担心我们的培训样本是有偏见的,并且某些组(以可观察或无法观察到的属性为特征)可能相对于一般人群而言是不足或代表过多的;在这种情况下,对培训集的经验风险最小化可能无法产生在部署时表现良好的规则。我们基于分配强大的优化和灵敏度分析的概念,我们提出了一种学习决策规则的方法,该方法将在测试分布家族的家庭中最小化最糟糕的案例风险,其有条件的结果分布$ y $ y $ y $ y $ x $有所不同有条件的训练分布最多是一个恒定因素,并且相对于训练数据的协变量分布,其协变量分布绝对是连续的。我们应用Rockafellar和Uryasev的结果表明,此问题等同于增强的凸风险最小化问题。我们提供了使用筛子的方法来学习健壮模型的统计保证,并提出了一种深度学习算法,其损失函数捕获了我们的稳健性目标。我们从经验上验证了我们在模拟中提出的方法和使用MIMIC-III数据集的案例研究。
translated by 谷歌翻译
预测一组结果 - 而不是独特的结果 - 是统计学习中不确定性定量的有前途的解决方案。尽管有关于构建具有统计保证的预测集的丰富文献,但适应未知的协变量转变(实践中普遍存在的问题)还是一个严重的未解决的挑战。在本文中,我们表明具有有限样本覆盖范围保证的预测集是非信息性的,并提出了一种新型的无灵活分配方法PredSet-1Step,以有效地构建了在未知协方差转移下具有渐近覆盖范围保证的预测集。我们正式表明我们的方法是\ textIt {渐近上可能是近似正确},对大型样本的置信度有很好的覆盖误差。我们说明,在南非队列研究中,它在许多实验和有关HIV风险预测的数据集中实现了名义覆盖范围。我们的理论取决于基于一般渐近线性估计器的WALD置信区间覆盖范围的融合率的新结合。
translated by 谷歌翻译
在本文中,我们研究了非交互性局部差异隐私(NLDP)模型中估计平滑普遍线性模型(GLM)的问题。与其经典设置不同,我们的模型允许服务器访问一些其他公共但未标记的数据。在本文的第一部分中,我们专注于GLM。具体而言,我们首先考虑每个数据记录均为I.I.D.的情况。从零均值的多元高斯分布中取样。由Stein的引理动机,我们提出了GLMS的$(Epsilon,\ delta)$ -NLDP算法。此外,算法的公共数据和私人数据的示例复杂性以实现$ \ alpha $的$ \ ell_2 $ -norm估计错误(具有高概率)为$ {o}(p \ alpha^{ - 2})$和$ \ tilde {o}(p^3 \ alpha^{ - 2} \ epsilon^{ - 2})$,其中$ p $是特征向量的维度。这是对$ \ alpha^{ - 1} $中先前已知的指数或准过程的重大改进,或者在$ p $中的指数smack sample sample smack glms的复杂性,没有公共数据。然后,我们考虑一个更通用的设置,每个数据记录为I.I.D.从某些次高斯分布中取样,有限制的$ \ ell_1 $ -norm。基于Stein的引理的变体,我们提出了一个$(\ epsilon,\ delta)$ - NLDP算法,用于GLMS的公共和私人数据的样本复杂性,以实现$ \ ell_ \ elfty $ - infty $ -NOMM估计的$ \ alpha误差$是$ is $ {o}(p^2 \ alpha^{ - 2})$和$ \ tilde {o}(p^2 \ alpha^{ - 2} \ epsilon^{ - 2})$,温和的假设,如果$ \ alpha $不太小({\ em i.e.,} $ \ alpha \ geq \ omega(\ frac {1} {\ sqrt {p}}})$)。在本文的第二部分中,我们将我们的想法扩展到估计非线性回归的问题,并显示出与多元高斯和次高斯案例的GLMS相似的结果。最后,我们通过对合成和现实世界数据集的实验来证明算法的有效性。
translated by 谷歌翻译
我们在对数损失下引入条件密度估计的过程,我们调用SMP(样本Minmax预测器)。该估算器最大限度地减少了统计学习的新一般过度风险。在标准示例中,此绑定量表为$ d / n $,$ d $ d $模型维度和$ n $ sample大小,并在模型拼写条目下批判性仍然有效。作为一个不当(超出型号)的程序,SMP在模型内估算器(如最大似然估计)的内部估算器上,其风险过高的风险降低。相比,与顺序问题的方法相比,我们的界限删除了SubOltimal $ \ log n $因子,可以处理无限的类。对于高斯线性模型,SMP的预测和风险受到协变量的杠杆分数,几乎匹配了在没有条件的线性模型的噪声方差或近似误差的条件下匹配的最佳风险。对于Logistic回归,SMP提供了一种非贝叶斯方法来校准依赖于虚拟样本的概率预测,并且可以通过解决两个逻辑回归来计算。它达到了$ O的非渐近风险((d + b ^ 2r ^ 2)/ n)$,其中$ r $绑定了特征的规范和比较参数的$ B $。相比之下,在模型内估计器内没有比$ \ min达到更好的速率({b r} / {\ sqrt {n}},{d e ^ {br} / {n})$。这为贝叶斯方法提供了更实用的替代方法,这需要近似的后部采样,从而部分地解决了Foster等人提出的问题。 (2018)。
translated by 谷歌翻译
成对学习是指损失函数取决于一对情况的学习任务。它实例化了许多重要的机器学习任务,如双级排名和度量学习。一种流行的方法来处理成对学习中的流数据是在线梯度下降(OGD)算法,其中需要将当前实例配对以前具有足够大的尺寸的先前实例的电流实例,因此遭受可扩展性问题。在本文中,我们提出了用于成对学习的简单随机和在线梯度下降方法。与现有研究的显着差异是,我们仅将当前实例与前一个构建梯度方向配对,这在存储和计算复杂性中是有效的。我们为凸和非凸起的展示结果,优化和泛化误差界以及平滑和非光滑问题都开发了新颖的稳定性结果,优化和泛化误差界限。我们引入了新颖的技术来解耦模型的依赖性和前一个例子在优化和泛化分析中。我们的研究解决了使用具有非常小的固定尺寸的缓冲集开发OGD的有意义的泛化范围的开放问题。我们还扩展了我们的算法和稳定性分析,以便为成对学习开发差异私有的SGD算法,这显着提高了现有结果。
translated by 谷歌翻译
Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ǫ-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance.
translated by 谷歌翻译
许多实际优化问题涉及不确定的参数,这些参数具有概率分布,可以使用上下文特征信息来估算。与首先估计不确定参数的分布然后基于估计优化目标的标准方法相反,我们提出了一个\ textIt {集成条件估计 - 优化}(ICEO)框架,该框架估计了随机参数的潜在条件分布同时考虑优化问题的结构。我们将随机参数的条件分布与上下文特征之间的关系直接建模,然后以与下游优化问题对齐的目标估算概率模型。我们表明,我们的ICEO方法在适度的规律性条件下渐近一致,并以概括范围的形式提供有限的性能保证。在计算上,使用ICEO方法执行估计是一种非凸面且通常是非差异的优化问题。我们提出了一种通用方法,用于近似从估计的条件分布到通过可区分函数的最佳决策的潜在非差异映射,这极大地改善了应用于非凸问题的基于梯度的算法的性能。我们还提供了半代理案例中的多项式优化解决方案方法。还进行了数值实验,以显示我们在不同情况下的方法的经验成功,包括数据样本和模型不匹配。
translated by 谷歌翻译
这项工作提出了一种分散的架构,其中个别代理旨在解决分类问题,同时观察不同尺寸的流特征,并从可能不同的分布产生。在社会学习的背景下,已经开发了几种有用的策略,通过跨分布式代理的本地合作解决了决策问题,并允许他们从流数据中学习。然而,传统的社会学习策略依赖于每个代理人对观察结果分布的重要知识的基本假设。在这项工作中,我们通过引入一种机器学习框架来克服这一问题,该机器学习框架利用图形的社交交互,导致分布式分类问题的完全数据驱动的解决方案。在拟议的社交机器学习(SML)策略中,存在两个阶段:在训练阶段,分类器被独立培训,以使用有限数量的训练样本来产生一组假设的信念;在预测阶段,分类器评估流媒体未标记的观察,并与邻近分类器共享他们的瞬时信仰。我们表明SML策略使得代理能够在这种高度异构的环境下一致地学习,并且即使在预测阶段决定未标记的样本时,即使在预测阶段也允许网络继续学习。预测决策用于以明显不同的方式不断地提高性能,这些方式与大多数现有的静态分类方案不同,在培训之后,未标记数据的决策不会重新用于改善未来的性能。
translated by 谷歌翻译
转移学习或域适应性与机器学习问题有关,在这些问题中,培训和测试数据可能来自可能不同的概率分布。在这项工作中,我们在Russo和Xu发起的一系列工作之后,就通用错误和转移学习算法的过量风险进行了信息理论分析。我们的结果也许表明,也许正如预期的那样,kullback-leibler(kl)Divergence $ d(\ mu || \ mu')$在$ \ mu $和$ \ mu'$表示分布的特征中起着重要作用。培训数据和测试测试。具体而言,我们为经验风险最小化(ERM)算法提供了概括误差上限,其中两个分布的数据在训练阶段都可用。我们进一步将分析应用于近似的ERM方法,例如Gibbs算法和随机梯度下降方法。然后,我们概括了与$ \ phi $ -Divergence和Wasserstein距离绑定的共同信息。这些概括导致更紧密的范围,并且在$ \ mu $相对于$ \ mu' $的情况下,可以处理案例。此外,我们应用了一套新的技术来获得替代的上限,该界限为某些学习问题提供了快速(最佳)的学习率。最后,受到派生界限的启发,我们提出了Infoboost算法,其中根据信息测量方法对源和目标数据的重要性权重进行了调整。经验结果表明了所提出的算法的有效性。
translated by 谷歌翻译