缺乏标记的培训数据是许多应用程序中机器学习的瓶颈。为了解决瓶颈,一个有希望的方向是数据编程方法,该方法汇总了弱监督信号的不同来源,以轻松生成标记的数据。数据编程使用标签功能(LF)编码每个弱监督源,这是一个预测嘈杂标签的用户提供的程序。生成的标签的质量取决于标签聚合模型,该模型汇总了所有LFS的所有嘈杂标签以推断地面真相标签。现有的标签聚合方法通常依赖于各种假设,并且在整个数据集中都不强大,因为我们将在经验上显示。我们首次提供了一种分析标签聚合方法,该方法是最小化假设的,并且在最小化某种形式的平均预测误差方面是最佳的。由于分析形式的复杂性是指数级的,因此我们训练一个学会成为分析方法的模型。经过训练后,该模型可用于任何看不见的数据集,该模型可以在线性时间内单个正向通行证中每个数据集的地面真相标签。我们显示该模型可以使用合成生成的数据进行训练,并为模型设计有效的体系结构。在14个现实世界数据集上,我们的模型在准确性(平均为3.5点)和效率(平均降低六倍)方面大大优于现有方法。
translated by 谷歌翻译
通过更换繁琐的手动收集地面真理标签,聚合多个弱监管源(WS)可以缓解多种机器学习应用中的数据标记瓶颈。然而,当前的现有技术不使用任何标记的训练数据的方法需要两个单独的建模步骤:基于WS源的基于WS源的概率潜在变量模型 - 使得在实践中很少 - 之后是下游模型训练。重要的是,建模的第一步不考虑下游模型的性能。为了解决这些警告,我们提出了一种直接学习下游模​​型的端到端方法,通过将其与先前概率后海报的概率标签最大化来直接学习下游模​​型。我们的结果表明,在下游测试集的最终模型性能方面,以及改善弱势监督源之间的依赖性的鲁棒性方面,对先前的工作进行了改进的性能。
translated by 谷歌翻译
我们引入了综合学习,这是一个原则性的框架,将弱监督集成到机器学习模型的培训过程中。我们的方法共同训练末端模型和标签模型,该模型汇总了多个弱监督源。我们介绍了一个标签模型,该模型可以学会以不同的数据点的方式汇总弱监督源,并考虑训练期间终端模型的性能。我们表明,我们的方法在一组6个基准分类数据集中优于现有的弱学习技术。当出现少量标记的数据和弱监督时,性能的提高既一致又大,并且可靠地获得了2-5点测试F1分数在非整合方法中获得的增长。
translated by 谷歌翻译
Labeling training data is increasingly the largest bottleneck in deploying machine learning systems. We present Snorkel, a first-of-its-kind system that enables users to train stateof-the-art models without hand labeling any training data. Instead, users write labeling functions that express arbitrary heuristics, which can have unknown accuracies and correlations. Snorkel denoises their outputs without access to ground truth by incorporating the first end-to-end implementation of our recently proposed machine learning paradigm, data programming. We present a flexible interface layer for writing labeling functions based on our experience over the past year collaborating with companies, agencies, and research labs. In a user study, subject matter experts build models 2.8× faster and increase predictive performance an average 45.5% versus seven hours of hand labeling. We study the modeling tradeoffs in this new setting and propose an optimizer for automating tradeoff decisions that gives up to 1.8× speedup per pipeline execution. In two collaborations, with the U.S. Department of Veterans Affairs and the U.S. Food and Drug Administration, and on four open-source text and image data sets representative of other deployments, Snorkel provides 132% average improvements to predictive performance over prior heuristic approaches and comes within an average 3.60% of the predictive performance of large hand-curated training sets.
translated by 谷歌翻译
Owing to the prohibitive costs of generating large amounts of labeled data, programmatic weak supervision is a growing paradigm within machine learning. In this setting, users design heuristics that provide noisy labels for subsets of the data. These weak labels are combined (typically via a graphical model) to form pseudolabels, which are then used to train a downstream model. In this work, we question a foundational premise of the typical weakly supervised learning pipeline: given that the heuristic provides all ``label" information, why do we need to generate pseudolabels at all? Instead, we propose to directly transform the heuristics themselves into corresponding loss functions that penalize differences between our model and the heuristic. By constructing losses directly from the heuristics, we can incorporate more information than is used in the standard weakly supervised pipeline, such as how the heuristics make their decisions, which explicitly informs feature selection during training. We call our method Losses over Labels (LoL) as it creates losses directly from heuristics without going through the intermediate step of a label. We show that LoL improves upon existing weak supervision methods on several benchmark text and image classification tasks and further demonstrate that incorporating gradient information leads to better performance on almost every task.
translated by 谷歌翻译
本文提出了在适当的监督信息下进行分解的生成因果代表(亲爱的)学习方法。与实施潜在变量独立性的现有分解方法不同,我们考虑了一种基本利益因素可以因果关系相关的一般情况。我们表明,即使在监督下,先前具有独立先验的方法也无法解散因果关系。在这一发现的激励下,我们提出了一种称为DEAR的新的解开学习方法,该方法可以使因果可控的产生和因果代表学习。这种新公式的关键要素是使用结构性因果模型(SCM)作为双向生成模型的先验分布。然后,使用合适的GAN算法与发电机和编码器共同训练了先验,并与有关地面真相因子及其基本因果结构的监督信息合并。我们提供了有关该方法的可识别性和渐近收敛性的理论理由。我们对合成和真实数据集进行了广泛的实验,以证明DEAR在因果可控生成中的有效性,以及在样本效率和分布鲁棒性方面,学到的表示表示对下游任务的好处。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
虽然神经网络在平均病例的性能方面对分类任务的成功显着,但它们通常无法在某些数据组上表现良好。这样的组信息可能是昂贵的;因此,即使在培训数据不可用的组标签不可用,较稳健性和公平的最新作品也提出了改善最差组性能的方法。然而,这些方法通常在培训时间使用集团信息的表现不佳。在这项工作中,我们假设没有组标签的较大数据集一起访问少量组标签。我们提出了一个简单的两步框架,利用这个部分组信息来提高最差组性能:训练模型以预测训练数据的丢失组标签,然后在强大的优化目标中使用这些预测的组标签。从理论上讲,我们在最差的组性能方面为我们的方法提供泛化界限,展示了泛化误差如何相对于培训点总数和具有组标签的培训点的数量。凭经验,我们的方法优于不使用群组信息的基线表达,即使只有1-33%的积分都有组标签。我们提供消融研究,以支持我们框架的稳健性和可扩展性。
translated by 谷歌翻译
图对比度学习已被证明是图形神经网络(GNN)预训练的有效任务。但是,一个关键问题可能会严重阻碍现有作品中的代表权:当前方法创建的积极实例通常会错过图表的关键信息,甚至会错过非法实例(例如分子生成中的非化学意识图)。为了解决此问题,我们建议直接从训练集中的现有图中选择正图实例,该实例最终保持与目标图的合法性和相似性。我们的选择基于某些特定于域的成对相似性测量以及从层次图编码图中的相似性关系的采样。此外,我们开发了一种自适应节点级预训练方法,以动态掩盖节点在图中均匀分布。我们对来自各个域的$ 13 $图形分类和节点分类基准数据集进行了广泛的实验。结果表明,通过我们的策略预先培训的GNN模型可以胜过那些训练有素的从划痕模型以及通过现有方法获得的变体。
translated by 谷歌翻译
补充标签学习(CLL)是一个弱监督的学习问题,旨在仅从互补标签中学习多级分类器,该标签表明一个实例不属于的类。现有方法主要采用简化范式对普通分类的范式,该分类应用了特定的转换和替代损失,以将CLL连接回普通分类。然而,这些方法面临着几个局限性,例如过度合适或挂在深层模型上的趋势。在本文中,我们以一种新颖的视角避开了这些局限性 - 将互补类别的概率估计减少到概率上。我们证明,互补标签的准确概率估计通过一个简单的解码步骤导致良好的分类器。该证明建立了从CLL到概率估计值的还原框架。该框架提供了几种关键CLL方法作为特殊情况的解释,并使我们能够设计一种在嘈杂环境中更强大的改进算法。该框架还提出了基于概率估计质量的验证过程,从而导致了仅使用互补标签验证模型的另一种方法。灵活的框架为使用深层和非深度模型以估算解决CLL问题时开辟了广泛的未开发机会。经验实验进一步验证了该框架在各种环境中的功效和鲁棒性。
translated by 谷歌翻译
我们提出了TABPFN,这是一种与小型表格数据集上的最新技术竞争性的自动化方法,而更快的速度超过1,000美元。我们的方法非常简单:它完全符合单个神经网络的权重,而单个正向通行证直接产生了对新数据集的预测。我们的AutoML方法是使用基于变压器的先验数据拟合网络(PFN)体系结构进行元学习的,并近似贝叶斯推断,其先验是基于简单性和因果结构的假设。先验包含庞大的结构性因果模型和贝叶斯神经网络,其偏见是小体系结构,因此复杂性较低。此外,我们扩展了PFN方法以在实际数据上校准Prior的超参数。通过这样做,我们将抽象先前的假设与对真实数据的启发式校准分开。之后,修复了校准的超参数,并在按钮按钮时可以将TABPFN应用于任何新的表格数据集。最后,在OpenML-CC18套件的30个数据集上,我们表明我们的方法优于树木,并与复杂的最新Automl系统相同,并且在不到一秒钟内产生的预测。我们在补充材料中提供所有代码和最终训练的TABPFN。
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
在我们与正在使用当今汽车系统的领域专家合作的经验中,我们遇到的一个常见问题是我们所说的“不切实际的期望” - 当用户通过嘈杂的数据获取过程面临非常具有挑战性的任务时,同时被期望实现机器学习(ML)的精度非常高。其中许多是从一开始就失败的。在传统的软件工程中,通过可行性研究解决了此问题,这是开发任何软件系统之前必不可少的一步。在本文中,我们介绍了Snoopy,目的是支持数据科学家和机器学习工程师在构建ML应用之前进行系统和理论上建立的可行性研究。我们通过估计基本任务的不可还原错误(也称为贝叶斯错误率(BER))来解决此问题,这源于用于训练或评估ML模型工件的数据集中的数据质量问题。我们设计了一个实用的贝叶斯误差估计器,该估计值与计算机视觉和自然语言处理中的6个数据集(具有不同级别的其他实际和合成噪声)上的基线可行性研究候选者进行了比较。此外,通过将我们的系统可行性研究和其他信号包括在迭代标签清洁过程中,我们在端到端实验中证明了用户如何能够节省大量的标签时间和货币努力。
translated by 谷歌翻译
图表表示学习是一种快速增长的领域,其中一个主要目标是在低维空间中产生有意义的图形表示。已经成功地应用了学习的嵌入式来执行各种预测任务,例如链路预测,节点分类,群集和可视化。图表社区的集体努力提供了数百种方法,但在所有评估指标下没有单一方法擅长,例如预测准确性,运行时间,可扩展性等。该调查旨在通过考虑算法来评估嵌入方法的所有主要类别的图表变体,参数选择,可伸缩性,硬件和软件平台,下游ML任务和多样化数据集。我们使用包含手动特征工程,矩阵分解,浅神经网络和深图卷积网络的分类法组织了图形嵌入技术。我们使用广泛使用的基准图表评估了节点分类,链路预测,群集和可视化任务的这些类别算法。我们在Pytorch几何和DGL库上设计了我们的实验,并在不同的多核CPU和GPU平台上运行实验。我们严格地审查了各种性能指标下嵌入方法的性能,并总结了结果。因此,本文可以作为比较指南,以帮助用户选择最适合其任务的方法。
translated by 谷歌翻译
Random forests are some of the most widely used machine learning models today, especially in domains that necessitate interpretability. We present an algorithm that accelerates the training of random forests and other popular tree-based learning methods. At the core of our algorithm is a novel node-splitting subroutine, dubbed MABSplit, used to efficiently find split points when constructing decision trees. Our algorithm borrows techniques from the multi-armed bandit literature to judiciously determine how to allocate samples and computational power across candidate split points. We provide theoretical guarantees that MABSplit improves the sample complexity of each node split from linear to logarithmic in the number of data points. In some settings, MABSplit leads to 100x faster training (an 99% reduction in training time) without any decrease in generalization performance. We demonstrate similar speedups when MABSplit is used across a variety of forest-based variants, such as Extremely Random Forests and Random Patches. We also show our algorithm can be used in both classification and regression tasks. Finally, we show that MABSplit outperforms existing methods in generalization performance and feature importance calculations under a fixed computational budget. All of our experimental results are reproducible via a one-line script at https://github.com/ThrunGroup/FastForest.
translated by 谷歌翻译
学习神经集功能在许多应用中越来越重要,例如产品推荐和AI辅助药物发现中的复合选择。在功能值Oracle下,大多数现有的作品研究方法学方法学方法学都需要昂贵的监督信号。这使得仅在最佳子集(OS)Oracle下仅进行弱监督的应用程序使其不切实际,而研究的研究令人惊讶地忽略了。在这项工作中,我们提出了一个原则上但实用的最大似然学习框架,称为等效性,该框架同时满足OS ORACLE下的以下学习设置功能:i)置入了模型的设定质量函数的置换率; ii)许可不同地面套件; iii)最低先验;和iv)可伸缩性。我们框架的主要组成部分涉及:对设定质量函数的基于能量的处理,深空式体系结构来处理置换不变性,平均场变异推理及其摊销变体。由于这些高级体系结构的优雅组合,对三个现实世界应用的实证研究(包括亚马逊产品推荐,设置异常检测和虚拟筛选的复合选择)表明,EquivSet的表现优于基本线的大幅度。
translated by 谷歌翻译
哪种结构可以使学习者能够从未标记的数据中发现类?传统方法取决于功能空间的相似性和对数据的英勇假设。在本文中,我们在潜在标签换档(LLS)下介绍了无监督的学习,我们可以从多个域中访问未标记的数据,以便标签边缘$ p_d(y)$可以跨域变化,但是类有条件的$ p(\ mathbf) {x} | y)$不。这项工作实例化了识别类别的新原则:将分组分组的元素。对于有限输入空间,我们在LLS和主题建模之间建立了同构:输入对应于单词,域,文档和标签与主题。解决连续数据时,我们证明,当每个标签的支持包含一个可分离区域时,类似于锚词,Oracle访问$ P(d | \ Mathbf {x})$足以识别$ p_d(y)$和$ p_d( y | \ mathbf {x})$ for排列。因此,我们引入了一种实用算法,该算法利用域 - 歧义模型如下:(i)通过域歧视器$ p(d | \ mathbf {x})推动示例; (ii)通过$ p(d | \ mathbf {x})$ space中的聚类示例来离散数据; (iii)对离散数据执行非负矩阵分解; (iv)将回收的$ P(y | d)$与鉴别器输出$ p(d | \ mathbf {x})$结合在一起计算$ p_d(y | x)\; \ forall d $。通过半合成实验,我们表明我们的算法可以利用域信息来改善无监督的分类方法。当功能空间相似性并不表示真实分组时,我们揭示了标准无监督分类方法的故障模式,并从经验上证明我们的方法可以更好地处理这种情况。我们的结果建立了分销转移与主题建模之间的密切联系,为将来的工作开辟了有希望的界限。
translated by 谷歌翻译
即使机器学习算法已经在数据科学中发挥了重要作用,但许多当前方法对输入数据提出了不现实的假设。由于不兼容的数据格式,或数据集中的异质,分层或完全缺少的数据片段,因此很难应用此类方法。作为解决方案,我们提出了一个用于样本表示,模型定义和培训的多功能,统一的框架,称为“ Hmill”。我们深入审查框架构建和扩展的机器学习的多个范围范式。从理论上讲,为HMILL的关键组件的设计合理,我们将通用近似定理的扩展显示到框架中实现的模型所实现的所有功能的集合。本文还包含有关我们实施中技术和绩效改进的详细讨论,该讨论将在MIT许可下发布供下载。该框架的主要资产是其灵活性,它可以通过相同的工具对不同的现实世界数据源进行建模。除了单独观察到每个对象的一组属性的标准设置外,我们解释了如何在框架中实现表示整个对象系统的图表中的消息推断。为了支持我们的主张,我们使用框架解决了网络安全域的三个不同问题。第一种用例涉及来自原始网络观察结果的IoT设备识别。在第二个问题中,我们研究了如何使用以有向图表示的操作系统的快照可以对恶意二进制文件进行分类。最后提供的示例是通过网络中实体之间建模域黑名单扩展的任务。在所有三个问题中,基于建议的框架的解决方案可实现与专业方法相当的性能。
translated by 谷歌翻译
弱监督(WS)框架是一种绕过手工标记大型数据集的流行方式,用于培训数据饥饿的模型。这些方法综合了多种噪声,但更便宜地获得了对下游训练的一套高质量伪标签的标签。然而,合成技术特异于特定类型的标签,例如二元标记或序列,并且每种新标签类型需要手动设计新的合成算法。相反,我们提出了一种普遍的技术,它可以通过任何标签类型的弱监管,同时仍提供所需的性质,包括实际灵活性,计算效率和理论保证。我们将这种技术应用于以前不被WS框架解决的重要问题,包括学习在双曲线歧管中的排名,回归和学习。从理论上讲,我们的合成方法产生一致的估计,用于学习挑战但是指数家庭模型的重要概括。通过实验,我们验证了我们的框架,并在不同的环境中显示了基础的基准,包括真实的学习 - 排名和回归问题以及学习在双曲线歧管上。
translated by 谷歌翻译
大多数设置深度学习的预测模型,使用Set-Scifariant操作,但它们实际上在MultiSet上运行。我们表明设置的函数不能代表多种功能上的某些功能,因此我们介绍了更适当的多种式概念概念。我们确定现有的深度设置预测网络(DSPN)可以是多机构的,而不会被设定的标准规模阻碍,并通过近似隐式差分改进它,允许更好地优化,同时更快和节省存储器。在一系列玩具实验中,我们表明,多机构的角度是有益的,在大多数情况下,我们对DSPN的变化达到了更好的结果。关于CLEVR对象性质预测,由于通过隐含分化所取得的益处,我们在最先进的评估指标中从8%到77%的最先进的槽注意力从8%提高到77%。
translated by 谷歌翻译