图对比度学习已被证明是图形神经网络(GNN)预训练的有效任务。但是,一个关键问题可能会严重阻碍现有作品中的代表权:当前方法创建的积极实例通常会错过图表的关键信息,甚至会错过非法实例(例如分子生成中的非化学意识图)。为了解决此问题,我们建议直接从训练集中的现有图中选择正图实例,该实例最终保持与目标图的合法性和相似性。我们的选择基于某些特定于域的成对相似性测量以及从层次图编码图中的相似性关系的采样。此外,我们开发了一种自适应节点级预训练方法,以动态掩盖节点在图中均匀分布。我们对来自各个域的$ 13 $图形分类和节点分类基准数据集进行了广泛的实验。结果表明,通过我们的策略预先培训的GNN模型可以胜过那些训练有素的从划痕模型以及通过现有方法获得的变体。
translated by 谷歌翻译
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained models and achieving state-of-the-art performance for molecular property prediction and protein function prediction.However, pre-training on graph datasets remains a hard challenge. Several key studies (
translated by 谷歌翻译
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph classification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) 1 -a self-supervised graph neural network pre-training framework-to capture the universal network topological properties across multiple networks. We design GCC's pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.
translated by 谷歌翻译
由于现实世界图形/网络数据中的广泛标签稀缺问题,因此,自我监督的图形神经网络(GNN)非常需要。曲线图对比度学习(GCL),通过训练GNN以其不同的增强形式最大化相同图表之间的表示之间的对应关系,即使在不使用标签的情况下也可以产生稳健和可转移的GNN。然而,GNN由传统的GCL培训经常冒险捕获冗余图形特征,因此可能是脆弱的,并在下游任务中提供子对比。在这里,我们提出了一种新的原理,称为普通的普通GCL(AD-GCL),其使GNN能够通过优化GCL中使用的对抗性图形增强策略来避免在训练期间捕获冗余信息。我们将AD-GCL与理论解释和设计基于可训练的边缘滴加图的实际实例化。我们通过与最先进的GCL方法进行了实验验证了AD-GCL,并在无监督,6 \%$ 14 \%$ 6 \%$ 14 \%$ 6 \%$ 6 \%$ 3 \%$ 3 \%$达到半监督总体学习设置,具有18个不同的基准数据集,用于分子属性回归和分类和社交网络分类。
translated by 谷歌翻译
使用图神经网络(GNN)提取分子的信息表示,对于AI驱动的药物发现至关重要。最近,图形研究界一直在试图复制自然语言处理预处理的成功,并获得了一些成功。但是,我们发现在许多情况下,自我监督预审计对分子数据的益处可以忽略不计。我们对GNN预处理的关键组成部分进行了彻底的消融研究,包括预处理目标,数据拆分方法,输入特征,预处理数据集量表和GNN体系结构,以决定下游任务的准确性。我们的第一个重要发现是,在许多情况下,自我监督的图表预处理没有统计学上的显着优势。其次,尽管可以通过额外的监督预处理可以观察到改进,但通过更丰富或更平衡的数据拆分,改进可能会减少。第三,实验性超参数对下游任务的准确性具有更大的影响,而不是训练训练的任务。我们假设对分子进行预训练的复杂性不足,从而导致下游任务的可转移知识较低。
translated by 谷歌翻译
近年来,自我监督学习(SSL)已广泛探索。特别是,生成的SSL在自然语言处理和其他AI领域(例如BERT和GPT的广泛采用)中获得了新的成功。尽管如此,对比度学习 - 严重依赖结构数据的增强和复杂的培训策略,这是图SSL的主要方法,而迄今为止,生成SSL在图形上的进度(尤其是GAES)尚未达到潜在的潜力。正如其他领域所承诺的。在本文中,我们确定并检查对GAE的发展产生负面影响的问题,包括其重建目标,训练鲁棒性和错误指标。我们提出了一个蒙版的图形自动编码器Graphmae,该图可以减轻这些问题,以预处理生成性自我监督图。我们建议没有重建图形结构,而是提议通过掩盖策略和缩放余弦误差将重点放在特征重建上,从而使GraphMae的强大训练受益。我们在21个公共数据集上进行了大量实验,以实现三个不同的图形学习任务。结果表明,Graphmae-A简单的图形自动编码器具有仔细的设计-CAN始终在对比度和生成性最新基准相比,始终产生优于性的表现。这项研究提供了对图自动编码器的理解,并证明了在图上的生成自我监督预训练的潜力。
translated by 谷歌翻译
分子表示学习有助于多个下游任务,例如分子性质预测和药物设计。为了适当地代表分子,图形对比学习是一个有前途的范式,因为它利用自我监督信号并没有人类注释要求。但是,先前的作品未能将基本域名知识纳入图表语义,因此忽略了具有共同属性的原子之间的相关性,但不通过键连接连接。为了解决这些问题,我们构建化学元素知识图(KG),总结元素之间的微观关联,并提出了一种用于分子代表学习的新颖知识增强的对比学习(KCL)框架。 KCL框架由三个模块组成。第一个模块,知识引导的图形增强,基于化学元素kg增强原始分子图。第二模块,知识意识的图形表示,利用用于原始分子图的公共曲线图编码器和通过神经网络(KMPNN)的知识感知消息来提取分子表示来编码增强分子图中的复杂信息。最终模块是一种对比目标,在那里我们在分子图的这两个视图之间最大化协议。广泛的实验表明,KCL获得了八个分子数据集上的最先进基线的优异性能。可视化实验适当地解释了在增强分子图中从原子和属性中了解的KCL。我们的代码和数据可用于补充材料。
translated by 谷歌翻译
自我监督学习(SSL)是一种通过利用数据中固有的监督来学习数据表示的方法。这种学习方法是药物领域的焦点,由于耗时且昂贵的实验,缺乏带注释的数据。使用巨大未标记数据的SSL显示出在分子属性预测方面表现出色的性能,但存在一些问题。 (1)现有的SSL模型是大规模的;在计算资源不足的情况下实现SSL有限制。 (2)在大多数情况下,它们不利用3D结构信息进行分子表示学习。药物的活性与药物分子的结构密切相关。但是,大多数当前模型不使用3D信息或部分使用它。 (3)以前对分子进行对比学习的模型使用置换原子和键的增强。因此,具有不同特征的分子可以在相同的阳性样品中。我们提出了一个新颖的对比学习框架,用于分子属性预测的小规模3D图对比度学习(3DGCL),以解决上述问题。 3DGCL通过不改变药物语义的预训练过程来反映分子的结构来学习分子表示。仅使用1,128个样本用于预训练数据和100万个模型参数,我们在四个回归基准数据集中实现了最先进或可比性的性能。广泛的实验表明,基于化学知识的3D结构信息对于用于财产预测的分子表示学习至关重要。
translated by 谷歌翻译
Generalizable, transferrable, and robust representation learning on graph-structured data remains a challenge for current graph neural networks (GNNs). Unlike what has been developed for convolutional neural networks (CNNs) for image data, self-supervised learning and pre-training are less explored for GNNs. In this paper, we propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data. We first design four types of graph augmentations to incorporate various priors. We then systematically study the impact of various combinations of graph augmentations on multiple datasets, in four different settings: semi-supervised, unsupervised, and transfer learning as well as adversarial attacks. The results show that, even without tuning augmentation extents nor using sophisticated GNN architectures, our GraphCL framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods. We also investigate the impact of parameterized graph augmentation extents and patterns, and observe further performance gains in preliminary experiments. Our codes are available at: https://github.com/Shen-Lab/GraphCL.
translated by 谷歌翻译
这项工作考虑了在属性关系图(ARG)上表示表示的任务。 ARG中的节点和边缘都与属性/功能相关联,允许ARG编码在实际应用中广泛观察到的丰富结构信息。现有的图形神经网络提供了有限的能力,可以在局部结构环境中捕获复杂的相互作用,从而阻碍他们利用ARG的表达能力。我们提出了Motif卷积模块(MCM),这是一种新的基于基线的图表表示技术,以更好地利用本地结构信息。处理连续边缘和节点功能的能力是MCM比现有基于基础图案的模型的优势之一。 MCM以无监督的方式构建了一个主题词汇,并部署了一种新型的主题卷积操作,以提取单个节点的局部结构上下文,然后将其用于通过多层perceptron学习高级节点表示,并在图神经网络中传递消息。与其他图形学习方法进行分类的合成图相比,我们的方法在捕获结构环境方面要好得多。我们还通过将其应用于几个分子基准来证明我们方法的性能和解释性优势。
translated by 谷歌翻译
Although substantial efforts have been made using graph neural networks (GNNs) for AI-driven drug discovery (AIDD), effective molecular representation learning remains an open challenge, especially in the case of insufficient labeled molecules. Recent studies suggest that big GNN models pre-trained by self-supervised learning on unlabeled datasets enable better transfer performance in downstream molecular property prediction tasks. However, they often require large-scale datasets and considerable computational resources, which is time-consuming, computationally expensive, and environmentally unfriendly. To alleviate these limitations, we propose a novel pre-training model for molecular representation learning, Bi-branch Masked Graph Transformer Autoencoder (BatmanNet). BatmanNet features two tailored and complementary graph autoencoders to reconstruct the missing nodes and edges from a masked molecular graph. To our surprise, BatmanNet discovered that the highly masked proportion (60%) of the atoms and bonds achieved the best performance. We further propose an asymmetric graph-based encoder-decoder architecture for either nodes and edges, where a transformer-based encoder only takes the visible subset of nodes or edges, and a lightweight decoder reconstructs the original molecule from the latent representation and mask tokens. With this simple yet effective asymmetrical design, our BatmanNet can learn efficiently even from a much smaller-scale unlabeled molecular dataset to capture the underlying structural and semantic information, overcoming a major limitation of current deep neural networks for molecular representation learning. For instance, using only 250K unlabelled molecules as pre-training data, our BatmanNet with 2.575M parameters achieves a 0.5% improvement on the average AUC compared with the current state-of-the-art method with 100M parameters pre-trained on 11M molecules.
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph, 1) the similarity between the original graph and the generated augmented graph gradually decreases; 2) the discrimination between all nodes within each augmented view gradually increases. In this paper, we argue that both such prior information can be incorporated (differently) into the contrastive learning paradigm following our general ranking framework. In particular, we first interpret CL as a special case of learning to rank (L2R), which inspires us to leverage the ranking order among positive augmented views. Meanwhile, we introduce a self-ranking paradigm to ensure that the discriminative information among different nodes can be maintained and also be less altered to the perturbations of different degrees. Experiment results on various benchmark datasets verify the effectiveness of our algorithm compared with the supervised and unsupervised models.
translated by 谷歌翻译
Molecular representation learning is crucial for the problem of molecular property prediction, where graph neural networks (GNNs) serve as an effective solution due to their structure modeling capabilities. Since labeled data is often scarce and expensive to obtain, it is a great challenge for GNNs to generalize in the extensive molecular space. Recently, the training paradigm of "pre-train, fine-tune" has been leveraged to improve the generalization capabilities of GNNs. It uses self-supervised information to pre-train the GNN, and then performs fine-tuning to optimize the downstream task with just a few labels. However, pre-training does not always yield statistically significant improvement, especially for self-supervised learning with random structural masking. In fact, the molecular structure is characterized by motif subgraphs, which are frequently occurring and influence molecular properties. To leverage the task-related motifs, we propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT). MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt. The prompt effectively augments the molecular graph with meaningful motifs in the continuous representation space; this provides more structural patterns to aid the downstream classifier in identifying molecular properties. Extensive experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction, with or without a few fine-tuning steps.
translated by 谷歌翻译
图级表示在各种现实世界中至关重要,例如预测分子的特性。但是实际上,精确的图表注释通常非常昂贵且耗时。为了解决这个问题,图形对比学习构造实例歧视任务,将正面对(同一图的增强对)汇总在一起,并将负面对(不同图的增强对)推开,以进行无监督的表示。但是,由于为了查询,其负面因素是从所有图中均匀抽样的,因此现有方法遭受关键采样偏置问题的损失,即,否定物可能与查询具有相同的语义结构,从而导致性能降解。为了减轻这种采样偏见问题,在本文中,我们提出了一种典型的图形对比度学习(PGCL)方法。具体而言,PGCL通过将语义相似的图形群群归为同一组的群集数据的基础语义结构,并同时鼓励聚类的一致性,以实现同一图的不同增强。然后给出查询,它通过从与查询群集不同的群集中绘制图形进行负采样,从而确保查询及其阴性样本之间的语义差异。此外,对于查询,PGCL根据其原型(集群质心)和查询原型之间的距离进一步重新重新重新重新重新享受其负样本,从而使那些具有中等原型距离的负面因素具有相对较大的重量。事实证明,这种重新加权策略比统一抽样更有效。各种图基准的实验结果证明了我们的PGCL比最新方法的优势。代码可在https://github.com/ha-lins/pgcl上公开获取。
translated by 谷歌翻译
图表是一个宇宙数据结构,广泛用于组织现实世界中的数据。像交通网络,社交和学术网络这样的各种实际网络网络可以由图表代表。近年来,目睹了在网络中代表顶点的快速发展,进入低维矢量空间,称为网络表示学习。表示学习可以促进图形数据上的新算法的设计。在本调查中,我们对网络代表学习的当前文献进行了全面审查。现有算法可以分为三组:浅埋模型,异构网络嵌入模型,图形神经网络的模型。我们为每个类别审查最先进的算法,并讨论这些算法之间的基本差异。调查的一个优点是,我们系统地研究了不同类别的算法底层的理论基础,这提供了深入的见解,以更好地了解网络表示学习领域的发展。
translated by 谷歌翻译
自我监督的学习逐渐被出现为一种强大的图形表示学习技术。然而,在图表数据上进行可转换,概括和强大的表示学习仍然是对预训练图形神经网络的挑战。在本文中,我们提出了一种简单有效的自我监督的自我监督的预训练策略,命名为成对半图歧视(PHD),明确地预先在图形级别进行了图形神经网络。 PHD被设计为简单的二进制分类任务,以辨别两个半图是否来自同一源。实验表明,博士学位是一种有效的预训练策略,与最先进的策略相比,在13图分类任务上提供了可比或优越的性能,并在与节点级策略结合时实现了显着的改进。此外,所学习代表的可视化透露,博士策略确实赋予了模型来学习像分子支架等图形级知识。这些结果已将博士学位作为图形级别代表学习中的强大有效的自我监督的学习策略。
translated by 谷歌翻译
分子特性预测是与关键现实影响的深度学习的增长最快的应用之一。包括3D分子结构作为学习模型的输入可以提高它们对许多分子任务的性能。但是,此信息是不可行的,可以以几个现实世界应用程序所需的规模计算。我们建议预先训练模型,以推理仅给予其仅为2D分子图的分子的几何形状。使用来自自我监督学习的方法,我们最大化3D汇总向量和图形神经网络(GNN)的表示之间的相互信息,使得它们包含潜在的3D信息。在具有未知几何形状的分子上进行微调期间,GNN仍然产生隐式3D信息,并可以使用它来改善下游任务。我们表明3D预训练为广泛的性质提供了显着的改进,例如八个量子力学性能的22%的平均MAE。此外,可以在不同分子空间中的数据集之间有效地传送所学习的表示。
translated by 谷歌翻译
变压器架构已成为许多域中的主导选择,例如自然语言处理和计算机视觉。然而,与主流GNN变体相比,它对图形水平预测的流行排行榜没有竞争表现。因此,它仍然是一个谜,变形金机如何对图形表示学习表现良好。在本文中,我们通过提出了基于标准变压器架构构建的Gragemer来解决这一神秘性,并且可以在广泛的图形表示学习任务中获得优异的结果,特别是在最近的OGB大规模挑战上。我们在图中利用变压器的关键洞察是有效地将图形的结构信息有效地编码到模型中。为此,我们提出了几种简单但有效的结构编码方法,以帮助Gramemormer更好的模型图形结构数据。此外,我们在数学上表征了Gramemormer的表现力,并展示了我们编码图形结构信息的方式,许多流行的GNN变体都可以被涵盖为GrameRormer的特殊情况。
translated by 谷歌翻译
图表自学学习(GSSL)铺平了无需专家注释的学习图嵌入的方式,这对分子图特别有影响,因为可能的分子数量很大,并且标签昂贵。但是,通过设计,GSSL方法没有经过训练,可以在一个下游任务上表现良好,而是旨在将其转移到许多人方面,从而使评估不那么直接。作为获得具有多种多样且可解释属性的分子图嵌入曲线的一步,我们引入了分子图表示评估(Molgrapheval),这是一组探针任务,分为(i)拓扑 - ,(ii)子结构 - 和(iii)和(iii)嵌入空间属性。通过对现有下游数据集和Molgrapheval上的现有GSSL方法进行基准测试,我们发现单独从现有数据集中得出的结论与更细粒度的探测之间存在令人惊讶的差异,这表明当前的评估协议没有提供整个图片。我们的模块化,自动化的端到端GSSL管道代码将在接受后发布,包括标准化的图形加载,实验管理和嵌入评估。
translated by 谷歌翻译