Reinforcement Learning (RL) is currently one of the most commonly used techniques for traffic signal control (TSC), which can adaptively adjusted traffic signal phase and duration according to real-time traffic data. However, a fully centralized RL approach is beset with difficulties in a multi-network scenario because of exponential growth in state-action space with increasing intersections. Multi-agent reinforcement learning (MARL) can overcome the high-dimension problem by employing the global control of each local RL agent, but it also brings new challenges, such as the failure of convergence caused by the non-stationary Markov Decision Process (MDP). In this paper, we introduce an off-policy nash deep Q-Network (OPNDQN) algorithm, which mitigates the weakness of both fully centralized and MARL approaches. The OPNDQN algorithm solves the problem that traditional algorithms cannot be used in large state-action space traffic models by utilizing a fictitious game approach at each iteration to find the nash equilibrium among neighboring intersections, from which no intersection has incentive to unilaterally deviate. One of main advantages of OPNDQN is to mitigate the non-stationarity of multi-agent Markov process because it considers the mutual influence among neighboring intersections by sharing their actions. On the other hand, for training a large traffic network, the convergence rate of OPNDQN is higher than that of existing MARL approaches because it does not incorporate all state information of each agent. We conduct an extensive experiments by using Simulation of Urban MObility simulator (SUMO), and show the dominant superiority of OPNDQN over several existing MARL approaches in terms of average queue length, episode training reward and average waiting time.
translated by 谷歌翻译
交通信号控制是一个具有挑战性的现实问题,旨在通过协调道路交叉路口的车辆移动来最大程度地减少整体旅行时间。现有使用中的流量信号控制系统仍然很大程度上依赖于过度简化的信息和基于规则的方法。具体而言,可以将绿色/红灯交替的周期性视为在策略优化中对每个代理进行更好计划的先验。为了更好地学习这种适应性和预测性先验,传统的基于RL的方法只能从只有本地代理的预定义动作池返回固定的长度。如果这些代理之间没有合作,则某些代理商通常会对其他代理产生冲突,从而减少整个吞吐量。本文提出了一个合作,多目标体系结构,具有年龄段的权重,以更好地估算流量信号控制优化的多重奖励条款,该奖励术语称为合作的多目标多代理多代理深度确定性策略梯度(Comma-ddpg)。运行的两种类型的代理可以最大程度地提高不同目标的奖励 - 一种用于每个交叉路口的本地流量优化,另一种用于全球流量等待时间优化。全球代理用于指导本地代理作为帮助更快学习的手段,但在推理阶段不使用。我们还提供了解决溶液存在的分析,并为提出的RL优化提供了融合证明。使用亚洲国家的交通摄像机收集的现实世界流量数据进行评估。我们的方法可以有效地将总延迟时间减少60 \%。结果表明,与SOTA方法相比,其优越性。
translated by 谷歌翻译
许多现实世界的应用程序都可以作为多机构合作问题进行配置,例如网络数据包路由和自动驾驶汽车的协调。深入增强学习(DRL)的出现为通过代理和环境的相互作用提供了一种有前途的多代理合作方法。但是,在政策搜索过程中,传统的DRL解决方案遭受了多个代理具有连续动作空间的高维度。此外,代理商政策的动态性使训练非平稳。为了解决这些问题,我们建议采用高级决策和低水平的个人控制,以进行有效的政策搜索,提出一种分层增强学习方法。特别是,可以在高级离散的动作空间中有效地学习多个代理的合作。同时,低水平的个人控制可以减少为单格强化学习。除了分层增强学习外,我们还建议对手建模网络在学习过程中对其他代理的政策进行建模。与端到端的DRL方法相反,我们的方法通过以层次结构将整体任务分解为子任务来降低学习的复杂性。为了评估我们的方法的效率,我们在合作车道变更方案中进行了现实世界中的案例研究。模拟和现实世界实验都表明我们的方法在碰撞速度和收敛速度中的优越性。
translated by 谷歌翻译
增强学习算法需要大量样品;这通常会限制他们的现实应用程序在简单的任务上。在多代理任务中,这种挑战更为出色,因为操作的每个步骤都需要进行沟通,转移或资源。这项工作旨在通过基于模型的学习来提高多代理控制的数据效率。我们考虑了代理商合作并仅与邻居进行当地交流的网络系统,并提出了基于模型的政策优化框架(DMPO)。在我们的方法中,每个代理都会学习一个动态模型,以预测未来的状态并通过通信广播其预测,然后在模型推出下训练策略。为了减轻模型生成数据的偏见,我们限制了用于产生近视推出的模型使用量,从而减少了模型生成的复合误差。为了使策略更新的独立性有关,我们引入了扩展的价值函数,理论上证明了由此产生的策略梯度是与真实策略梯度的紧密近似。我们在几个智能运输系统的基准上评估了我们的算法,这些智能运输系统是连接的自动驾驶汽车控制任务(FLOW和CACC)和自适应交通信号控制(ATSC)。经验结果表明,我们的方法可以实现卓越的数据效率,并使用真实模型匹配无模型方法的性能。
translated by 谷歌翻译
智能城市的智能交通灯可以最佳地减少交通拥堵。在这项研究中,我们采用了加强学习,培训了城市移动模拟器的红绿灯的控制代理。由于现有工程的差异,除了基于价值的方法之外,利用基于策略的深度加强学习方法,近端策略优化(PPO),例如Deep Q网络(DQN)和双DQN(DDQN)。首先,将获得PPO的最佳政策与来自DQN和DDQN的PPO相比。发现PPO的政策比其他政策更好。接下来,而不是固定间隔的流量光阶段,我们采用具有可变时间间隔的光相位,这导致更好的策略来传递流量流。然后,研究了环境和行动干扰的影响,以展示基于学习的控制器是强大的。最后,我们考虑不平衡的交通流量,并发现智能流量可以适度地对不平衡的流量方案执行,尽管它仅从平衡流量方案中了解最佳策略。
translated by 谷歌翻译
Multi-agent settings remain a fundamental challenge in the reinforcement learning (RL) domain due to the partial observability and the lack of accurate real-time interactions across agents. In this paper, we propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge within a large number of agents coexisting. First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations and learn local communication between neighboring agents. To facilitate multi-agent coordination, we explicitly learn the effect of joint actions by taking the policies of neighboring agents as inputs. Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions. To more effectively coordinate behaviors of neighboring agents, we enhance the mean-field approximation by a supervised policy rectification network (PRN) for rectifying real-time agent interactions and by a learnable compensation term for correcting the approximation bias. The proposed method enables efficient coordination as well as outperforms several baseline approaches on the adaptive traffic signal control (ATSC) task and the StarCraft II multi-agent challenge (SMAC).
translated by 谷歌翻译
在未来几年和几十年中,自动驾驶汽车(AV)将变得越来越普遍,为更安全,更方便的旅行提供了新的机会,并可能利用自动化和连接性的更智能的交通控制方法。跟随汽车是自动驾驶中的主要功能。近年来,基于强化学习的汽车已受到关注,目的是学习和达到与人类相当的绩效水平。但是,大多数现有的RL方法将汽车模拟为单方面问题,仅感知前方的车辆。然而,最近的文献,王和霍恩[16]表明,遵循的双边汽车考虑了前方的车辆,而后面的车辆表现出更好的系统稳定性。在本文中,我们假设可以使用RL学习这款双边汽车,同时学习其他目标,例如效率最大化,混蛋最小化和安全奖励,从而导致学识渊博的模型超过了人类驾驶。我们通过将双边信息集成到基于双边控制模型(BCM)的CAR遵循控制的状态和奖励功能的情况下,提出并引入了遵循控制遵循的汽车的深钢筋学习(DRL)框架。此外,我们使用分散的多代理增强学习框架来为每个代理生成相​​应的控制动作。我们的仿真结果表明,我们学到的政策比(a)汽车间的前进方向,(b)平均速度,(c)混蛋,(d)碰撞时间(TTC)和(e)的速度更好。字符串稳定性。
translated by 谷歌翻译
本文提出了一个基于加固学习(RL)的电动连接车辆(CV)的生态驾驶框架,以提高信号交叉点的车辆能效。通过整合基于型号的汽车策略,改变车道的政策和RL政策来确保车辆代理的安全操作。随后,制定了马尔可夫决策过程(MDP),该过程使车辆能够执行纵向控制和横向决策,从而共同优化了交叉口附近CVS的CAR跟踪和改变车道的行为。然后,将混合动作空间参数化为层次结构,从而在动态交通环境中使用二维运动模式训练代理。最后,我们所提出的方法从基于单车的透视和基于流的透视图中在Sumo软件中进行了评估。结果表明,我们的策略可以通过学习适当的动作方案来大大减少能源消耗,而不会中断其他人类驱动的车辆(HDVS)。
translated by 谷歌翻译
深度强化学习(DRL)使用多样化的非结构化数据,并使RL能够在高维环境中学习复杂的策略。基于自动驾驶汽车(AVS)的智能运输系统(ITS)为基于政策的DRL提供了绝佳的操场。深度学习体系结构解决了传统算法的计算挑战,同时帮助实现了AV的现实采用和部署。 AVS实施的主要挑战之一是,即使不是可靠和有效地管理的道路上的交通拥堵可能会加剧交通拥堵。考虑到每辆车的整体效果并使用高效和可靠的技术可以真正帮助优化交通流量管理和减少拥堵。为此,我们提出了一个智能的交通管制系统,该系统处理在交叉路口和交叉点后面的复杂交通拥堵场景。我们提出了一个基于DRL的信号控制系统,该系统根据当前交叉点的当前拥塞状况动态调整交通信号。为了应对交叉路口后面的道路上的拥堵,我们使用重新穿线技术来加载道路网络上的车辆。为了实现拟议方法的实际好处,我们分解了数据筒仓,并将所有来自传感器,探测器,车辆和道路结合使用的数据结合起来,以实现可持续的结果。我们使用Sumo微型模拟器进行模拟。我们提出的方法的重要性从结果中体现出来。
translated by 谷歌翻译
在本文中,我们重新审视了钢筋学习(RL)途径的一些基本场所,以自学习红绿灯。我们提出了一种选择的选择,提供强大的性能和良好的通知来看不见的交通流量。特别是,我们的主要贡献是三倍:我们的轻量级和聚类感知状态表示导致性能提高;我们重新格式化马尔可夫决策过程(MDP),使得它跳过冗余的黄灯时间,加快学习30%;我们调查了行动空间,并提供了对非循环和循环转换之间的性能差异的洞察。此外,我们提供了对未经证明交通的方法的概念性的见解。使用现实世界杭州交通数据集的评估表明,绘图优于最先进的规则和深度增强学习算法,展示了基于RL的方法来改善城市交通流量的潜力。
translated by 谷歌翻译
本文开发了用于多交叉路口自适应交通信号控制(TSC)的分散增强学习(RL)方案,称为“CVlight”,其利用从连接的车辆(CVS)收集的数据。国家和奖励设计促进了代理商之间的协调,并考虑由CVS收集的旅行延误。提出了一种新颖的算法,非对称优势演员 - 评论家(EB-A2C),其中CV和非CV信息都用于培训批评网络,而仅使用CV信息来执行最佳信号定时。综合实验表明,CVlight的优越性在一个2×2合成道路网络下的最先进的算法,各种交通需求模式和穿透速率。然后,学习的政策被可视化以进一步展示ASYM-A2C的优点。采用火车前技术来提高CVlight的可扩展性,这显着缩短了培训时间,并在5×5路网络下表现出性能的优势。在美国宾夕法尼亚州宾夕法尼亚州州学院的2×2路网络上进行了一个案例研究,以进一步展示了在现实世界方案下所提出的算法的有效性。与其他基线模型相比,训练有素的CVlight代理可以仅基于CV数据有效地控制多个交叉点,达到最佳性能,特别是在低CV渗透率下。
translated by 谷歌翻译
Various types of Multi-Agent Reinforcement Learning (MARL) methods have been developed, assuming that agents' policies are based on true states. Recent works have improved the robustness of MARL under uncertainties from the reward, transition probability, or other partners' policies. However, in real-world multi-agent systems, state estimations may be perturbed by sensor measurement noise or even adversaries. Agents' policies trained with only true state information will deviate from optimal solutions when facing adversarial state perturbations during execution. MARL under adversarial state perturbations has limited study. Hence, in this work, we propose a State-Adversarial Markov Game (SAMG) and make the first attempt to study the fundamental properties of MARL under state uncertainties. We prove that the optimal agent policy and the robust Nash equilibrium do not always exist for an SAMG. Instead, we define the solution concept, robust agent policy, of the proposed SAMG under adversarial state perturbations, where agents want to maximize the worst-case expected state value. We then design a gradient descent ascent-based robust MARL algorithm to learn the robust policies for the MARL agents. Our experiments show that adversarial state perturbations decrease agents' rewards for several baselines from the existing literature, while our algorithm outperforms baselines with state perturbations and significantly improves the robustness of the MARL policies under state uncertainties.
translated by 谷歌翻译
事物互联网(物联网)和人工智能(AI)的快速进步催化了智能城市的自适应交通信号控制系统(ATCS)的开发。特别是,深度增强学习(DRL)方法产生最先进的性能,并且具有很大的实际应用潜力。在现有的基于DRL的ATC中,受控信号从附近车辆收集交通状态信息,然后可以基于收集的信息确定最佳动作(例如,切换阶段)。 DRL模型完全“信任”该车辆正在向信号发送真实信息,使ATC易受伪造信息的对抗攻击。鉴于此,本文首次制定了一种新颖的任务,其中一组车辆可以协同地发送伪造的信息,以“欺骗”基于DRL的ATC,以节省他们的总旅行时间。为了解决拟议的任务,我们开发了由道路状语编码器,车辆解释器和通信机制组成的通用和有效的车辆斗争框架。我们采用我们的方法来攻击建立的基于DRL的ATC,并证明拼拼载的总行程时间可以通过合理数量的学习剧集显着减少,并且如果拼的车辆的数量增加,勾结效果将减小。此外,还提供了对基于DRL的ATC的实际部署的见解和建议。研究结果可以帮助提高ATC的可靠性和鲁棒性,并更好地保护智能移动系统。
translated by 谷歌翻译
在本文中,我们研究了网络多功能增强学习(MARL)的问题,其中许多代理被部署为部分连接的网络,并且每个代理只与附近的代理交互。网络Marl要求所有代理商以分散的方式作出决定,以优化具有网络之间邻居之间的限制通信的全局目标。受到事实的启发,即\ yexit {分享}在人类合作中发挥关键作用,我们提出了一个分层分散的MARL框架,使代理商能够学会与邻居动态共享奖励,以便鼓励代理商在全球合作客观的。对于每个代理,高级策略了解如何与邻居分析奖励以分解全局目标,而低级策略则会学会优化由邻域的高级策略引起的本地目标。两项政策形成双级优化,交替学习。我们经验证明LTOS在社交困境和网络MARL情景中表明现有的现有方法。
translated by 谷歌翻译
分散的学习对合作多代理增强学习(MARL)表现出了巨大的希望。但是,非平稳性仍然是分散学习的重大挑战。在论文中,我们以最简单和基本的方式解决了非平稳性问题,并提出\ textit {多代理替代Q学习}(MA2QL),在那里,代理商轮流通过Q学习来更新其Q-函数。MA2QL是完全分散合作MARL的一种\ Textit {Minimalist}方法,但理论上是基础的。我们证明,当每个代理商在每个回合都保证$ \ varepsilon $ -Convergence时,他们的联合政策会收敛到NASH平衡。实际上,MA2QL仅需要对独立Q学习(IQL)的最小变化。我们经验评估MA2QL对各种合作的多代理任务。结果表明,MA2QL始终胜过IQL,尽管这种变化很小,但它验证了MA2QL的有效性。
translated by 谷歌翻译
由于共同国家行动空间相对于代理人的数量,多代理强化学习(MARL)中的政策学习(MARL)是具有挑战性的。为了实现更高的可伸缩性,通过分解执行(CTDE)的集中式培训范式被MARL中的分解结构广泛采用。但是,我们观察到,即使在简单的矩阵游戏中,合作MARL中现有的CTDE算法也无法实现最佳性。为了理解这种现象,我们引入了一个具有政策分解(GPF-MAC)的广义多代理参与者批评的框架,该框架的特征是对分解的联合政策的学习,即,每个代理人的政策仅取决于其自己的观察行动历史。我们表明,最受欢迎的CTDE MARL算法是GPF-MAC的特殊实例,可能会陷入次优的联合政策中。为了解决这个问题,我们提出了一个新颖的转型框架,该框架将多代理的MDP重新制定为具有连续结构的特殊“单位代理” MDP,并且可以允许使用现成的单机械加固学习(SARL)算法来有效地学习相应的多代理任务。这种转换保留了SARL算法的最佳保证,以合作MARL。为了实例化此转换框架,我们提出了一个转换的PPO,称为T-PPO,该PPO可以在有限的多代理MDP中进行理论上执行最佳的策略学习,并在一系列合作的多代理任务上显示出明显的超出性能。
translated by 谷歌翻译
在过去的几十年中,车辆的升级和更新加速了。出于对环境友好和情报的需求,电动汽车(EV)以及连接和自动化的车辆(CAVS)已成为运输系统的新组成部分。本文开发了一个增强学习框架,以在信号交叉点上对由骑士和人类驱动车辆(HDV)组成的电力排实施自适应控制。首先,提出了马尔可夫决策过程(MDP)模型来描述混合排的决策过程。新颖的状态表示和奖励功能是为模型设计的,以考虑整个排的行为。其次,为了处理延迟的奖励,提出了增强的随机搜索(ARS)算法。代理商所学到的控制政策可以指导骑士的纵向运动,后者是排的领导者。最后,在模拟套件相扑中进行了一系列模拟。与几种最先进的(SOTA)强化学习方法相比,提出的方法可以获得更高的奖励。同时,仿真结果证明了延迟奖励的有效性,延迟奖励的有效性均优于分布式奖励机制}与正常的汽车跟随行为相比,灵敏度分析表明,可以将能量保存到不同的扩展(39.27%-82.51%))通过调整优化目标的相对重要性。在没有牺牲行进延迟的前提下,建议的控制方法可以节省多达53.64%的电能。
translated by 谷歌翻译
自动驾驶在过去二十年中吸引了重要的研究兴趣,因为它提供了许多潜在的好处,包括释放驾驶和减轻交通拥堵的司机等。尽管进展有前途,但车道变化仍然是自治车辆(AV)的巨大挑战,特别是在混合和动态的交通方案中。最近,强化学习(RL)是一种强大的数据驱动控制方法,已被广泛探索了在令人鼓舞的效果中的通道中的车道改变决策。然而,这些研究的大多数研究专注于单车展,并且在多个AVS与人类驱动车辆(HDV)共存的情况下,道路变化已经受到稀缺的关注。在本文中,我们在混合交通公路环境中制定了多个AVS的车道改变决策,作为多功能增强学习(Marl)问题,其中每个AV基于相邻AV的动作使车道变化的决定和HDV。具体地,使用新颖的本地奖励设计和参数共享方案开发了一种多代理优势演员批评网络(MA2C)。特别是,提出了一种多目标奖励功能来纳入燃油效率,驾驶舒适度和自主驾驶的安全性。综合实验结果,在三种不同的交通密度和各级人类司机侵略性下进行,表明我们所提出的Marl框架在效率,安全和驾驶员舒适方面始终如一地优于几个最先进的基准。
translated by 谷歌翻译
Autonomous vehicles are suited for continuous area patrolling problems. However, finding an optimal patrolling strategy can be challenging for many reasons. Firstly, patrolling environments are often complex and can include unknown and evolving environmental factors. Secondly, autonomous vehicles can have failures or hardware constraints such as limited battery lives. Importantly, patrolling large areas often requires multiple agents that need to collectively coordinate their actions. In this work, we consider these limitations and propose an approach based on a distributed, model-free deep reinforcement learning based multi-agent patrolling strategy. In this approach, agents make decisions locally based on their own environmental observations and on shared information. In addition, agents are trained to automatically recharge themselves when required to support continuous collective patrolling. A homogeneous multi-agent architecture is proposed, where all patrolling agents have an identical policy. This architecture provides a robust patrolling system that can tolerate agent failures and allow supplementary agents to be added to replace failed agents or to increase the overall patrol performance. This performance is validated through experiments from multiple perspectives, including the overall patrol performance, the efficiency of the battery recharging strategy, the overall robustness of the system, and the agents' ability to adapt to environment dynamics.
translated by 谷歌翻译
将深度强化学习(DRL)扩展到多代理领域的研究已经解决了许多复杂的问题,并取得了重大成就。但是,几乎所有这些研究都只关注离散或连续的动作空间,而且很少有作品曾经使用过多代理的深度强化学习来实现现实世界中的环境问题,这些问题主要具有混合动作空间。因此,在本文中,我们提出了两种算法:深层混合软性角色批评(MAHSAC)和多代理混合杂种深层确定性政策梯度(MAHDDPG)来填补这一空白。这两种算法遵循集中式培训和分散执行(CTDE)范式,并可以解决混合动作空间问题。我们的经验在多代理粒子环境上运行,这是一个简单的多代理粒子世界,以及一些基本的模拟物理。实验结果表明,这些算法具有良好的性能。
translated by 谷歌翻译