将大型矩阵分配到小矩阵中是模型压缩的流行策略。奇异值分解(SVD)在这种压缩策略中起着至关重要的作用,近似具有较少参数的学习矩阵。但是,SVD最大程度地减少了平方误差以重建原始矩阵而不衡量参数的重要性,从而为那些影响任务准确性的人提供了更大的重建误差。换句话说,SVD的优化目标与受过训练的模型的任务准确性不符。我们通过引入Fisher信息来权衡影响模型预测的参数的重要性来分析此先前未开发的问题,进行观察并解决该问题。这个想法导致了我们的方法:Fisher加权SVD(FWSVD)。尽管我们方法的分解矩阵并没有导致较小的重建错误,但我们发现我们所得的任务准确性更接近原始模型的性能。我们使用基于变压器的语言模型进行分析,显示我们的加权SVD很大程度上减轻了不匹配的优化目标,并可以以更高的压缩率维持模型性能。我们的方法可以直接压缩特定于任务的模型,同时比需要昂贵的模型预训练的其他紧凑型模型策略更好。此外,对压缩模型的评估表明,我们的方法可以进一步降低9%至30%的参数,对任务准确性产生不大的影响。
translated by 谷歌翻译
Singular value decomposition (SVD) is one of the most popular compression methods that approximate a target matrix with smaller matrices. However, standard SVD treats the parameters within the matrix with equal importance, which is a simple but unrealistic assumption. The parameters of a trained neural network model may affect task performance unevenly, which suggests non-equal importance among the parameters. Compared to SVD, the decomposition method aware of parameter importance is the more practical choice in real cases. Unlike standard SVD, weighted value decomposition is a non-convex optimization problem that lacks a closed-form solution. We systematically investigated multiple optimization strategies to tackle the problem and examined our method by compressing Transformer-based language models. Further, we designed a metric to predict when the SVD may introduce a significant performance drop, for which our method can be a rescue strategy. The extensive evaluations demonstrate that our method can perform better than current SOTA methods in compressing Transformer-based language models.
translated by 谷歌翻译
Despite achieving state-of-the-art performance on many NLP tasks, the high energy cost and long inference delay prevent Transformer-based pretrained language models (PLMs) from seeing broader adoption including for edge and mobile computing. Efficient NLP research aims to comprehensively consider computation, time and carbon emission for the entire life-cycle of NLP, including data preparation, model training and inference. In this survey, we focus on the inference stage and review the current state of model compression and acceleration for pretrained language models, including benchmarks, metrics and methodology.
translated by 谷歌翻译
基于变压器的NLP模型是使用数亿甚至数十亿个参数训练的,从而限制了其在计算受限环境中的适用性。尽管参数的数量通常与性能相关,但尚不清楚下游任务是否需要整个网络。在最新的修剪和提炼预培训模型的工作中,我们探索了在预训练模型中放下层的策略,并观察修剪对下游胶水任务的影响。我们能够修剪Bert,Roberta和XLNet型号高达40%,同时保持其原始性能的98%。此外,我们证明,在大小和性能方面,您的修剪模型与使用知识蒸馏的型号相提并论。我们的实验产生有趣的观察结果,例如(i)下层对于维持下游任务性能最重要,(ii)某些任务(例如释义检测和句子相似性)对于降低层的降低和(iii)经过训练的模型更强大。使用不同的目标函数表现出不同的学习模式,并且层掉落。
translated by 谷歌翻译
Low-rankness plays an important role in traditional machine learning, but is not so popular in deep learning. Most previous low-rank network compression methods compress the networks by approximating pre-trained models and re-training. However, the optimal solution in the Euclidean space may be quite different from the one in the low-rank manifold. A well-pre-trained model is not a good initialization for the model with low-rank constraints. Thus, the performance of a low-rank compressed network degrades significantly. Compared to other network compression methods such as pruning, low-rank methods attracts less attention in recent years. In this paper, we devise a new training method, low-rank projection with energy transfer (LRPET), that trains low-rank compressed networks from scratch and achieves competitive performance. First, we propose to alternately perform stochastic gradient descent training and projection onto the low-rank manifold. Compared to re-training on the compact model, this enables full utilization of model capacity since solution space is relaxed back to Euclidean space after projection. Second, the matrix energy (the sum of squares of singular values) reduction caused by projection is compensated by energy transfer. We uniformly transfer the energy of the pruned singular values to the remaining ones. We theoretically show that energy transfer eases the trend of gradient vanishing caused by projection. Third, we propose batch normalization (BN) rectification to cut off its effect on the optimal low-rank approximation of the weight matrix, which further improves the performance. Comprehensive experiments on CIFAR-10 and ImageNet have justified that our method is superior to other low-rank compression methods and also outperforms recent state-of-the-art pruning methods. Our code is available at https://github.com/BZQLin/LRPET.
translated by 谷歌翻译
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive, so it is difficult to efficiently execute them on resourcerestricted devices. To accelerate inference and reduce model size while maintaining accuracy, we first propose a novel Transformer distillation method that is specially designed for knowledge distillation (KD) of the Transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large "teacher" BERT can be effectively transferred to a small "student" Tiny-BERT. Then, we introduce a new two-stage learning framework for TinyBERT, which performs Transformer distillation at both the pretraining and task-specific learning stages. This framework ensures that TinyBERT can capture the general-domain as well as the task-specific knowledge in BERT. TinyBERT 41 with 4 layers is empirically effective and achieves more than 96.8% the performance of its teacher BERT BASE on GLUE benchmark, while being 7.5x smaller and 9.4x faster on inference. TinyBERT 4 is also significantly better than 4-layer state-of-the-art baselines on BERT distillation, with only ∼28% parameters and ∼31% inference time of them. Moreover, TinyBERT 6 with 6 layers performs on-par with its teacher BERT BASE .
translated by 谷歌翻译
具有许多预训练模型(PTM)的模型中心已经是深度学习的基石。尽管以高成本建造,但它们仍然保持\ emph {探索}:从业人员通常会通过普及从提供的模型中心中选择一个PTM,然后对PTM进行微调以解决目标任务。这种na \“我的但共同的实践构成了两个障碍,以充分利用预训练的模型中心:(1)通过受欢迎程度选择的PTM选择没有最佳保证;(2)仅使用一个PTM,而其余的PTM则被忽略。理想情况下。理想情况下。 ,为了最大程度地利用预训练的模型枢纽,需要尝试所有PTM的所有组合和广泛的微调每个PTM组合,这会产生指数组合和不可偿还的计算预算。在本文中,我们提出了一种新的范围排名和调整预训练的模型:(1)我们的会议论文〜\ citep {you_logme:_2021}提出的logMe,以估算预先训练模型提取的标签证据的最大值,该标签证据可以在模型中排名所有PTMS用于各种类型的PTM和任务的枢纽\ Emph {微调之前}。(2)如果我们不偏爱模型的体系结构,则可以对排名最佳的PTM进行微调和部署,或者可以通过TOPE调整目标PTM -k通过t排名PTM他提出了b-tuning算法。排名部分基于会议论文,我们在本文中完成了其理论分析,包括启发式证据最大化程序的收敛证明和特征维度的影响。调整零件引入了一种用于调整多个PTM的新型贝叶斯调整(B-Tuning)方法,该方法超过了专门的方法,该方法旨在调整均匀的PTMS,并为调整异质PTMS设置了一种新的技术。利用PTM枢纽的新范式对于整个机器学习社区的大量受众来说可能会很有趣。
translated by 谷歌翻译
在基于变压器的模型中通常观察到令牌均匀性,在经过变压器中经过堆叠的多个自我发场层后,不同的令牌共享大量相似信息。在本文中,我们建议使用每个变压器层的输出的奇异值的分布来表征令牌均匀性的现象,并从经验上说明,偏斜的奇异值分布可以减轻“令牌均匀性”问题。基于我们的观察结果,我们定义了奇异值分布的几种理想特性,并提出了一种新的转换函数,以更新奇异值。我们表明,除了减轻令牌均匀性外,转换功能还应保留原始嵌入空间中的当地邻域结构。我们提出的奇异价值变换函数应用于伯特,阿尔伯特,罗伯塔和德文尔特等一系列基于变压器的语言模型,并且在语义文本相似性评估和一系列胶水任务中观察到了改善的性能。我们的源代码可在https://github.com/hanqi-qi/tokenuni.git上找到。
translated by 谷歌翻译
我们介绍了BitFit,这是一种稀疏的重点方法,其中仅修改了模型的偏差(或其中一个子集)。我们表明,通过在预训练的BERT模型上应用BITFIT的小型至中等训练数据具有竞争力(有时比)对整个模型进行微调。对于较大的数据,该方法与其他稀疏微调方法具有竞争力。除了它们的实际实用性外,这些发现与理解常用的填补过程的问题有关:它们支持以下假设:填充主要是关于揭示通过语言模型培训引起的知识,而不是学习新的任务特定的语言知识。
translated by 谷歌翻译
压缩已成为必不可少的深度学习研究主题之一,特别是对于具有有限的计算能力和存储容量的边缘设备。在主要压缩技术中,已知通过矩阵分解的低秩压缩具有两个问题。首先,需要广泛的调整。其次,由此产生的压缩性能通常不令人印象深刻。在这项工作中,我们提出了一种低秩压缩方法,该方法利用修改的光束搜索自动等级选择和压缩型培训的修改稳定等级。得到的BSR(波束搜索和稳定等级)算法仅需要调谐所需压缩比的单个封路数据计。 BSR在精度和压缩比权衡曲线方面的性能转出优于先前已知的低秩压缩方法。此外,BSR可以与最先进的结构修剪方法进行或更好地执行。与修剪一样,BSR可以容易地与量化进行额外压缩。
translated by 谷歌翻译
转移学习提供了一种在学习另一个任务时从一个任务中利用知识的方式。执行转移学习通常涉及通过训练数据集上的梯度下降来迭代地更新模型的参数。在本文中,我们介绍了一种基本上不同的方法,用于将知识转移到跨模型,这些方法将多个模型“合并”成一个。我们的方法有效地涉及计算模型参数的加权平均值。我们表明,该平均值相当于从模型权重的后部的大致抽样。在某些情况下使用各向同性高斯近似时,我们还通过Fisher信息近似于精确矩阵来证明优势。总之,我们的方法使得与基于标准梯度的培训相比,可以以极低的计算成本将多种模型中的“知识”组合。我们展示了模型合并在中间任务培训和域适应问题上实现了基于梯度下降的转移学习的可比性。我们还表明,我们的合并程序使得可以以先前未开发的方式结合模型。为了测量我们方法的稳健性,我们对我们算法的设计进行了广泛的消融。
translated by 谷歌翻译
压缩预训练的深度神经网络的任务吸引了研究社区的广泛兴趣,因为它在使从业人员摆脱数据访问要求方面的巨大好处。在该域中,低级别的近似是一种有前途的方法,但是现有的解决方案被认为是限制的设计选择,并且未能有效地探索设计空间,从而导致严重的准确性降解和有限的压缩比达到了有限。为了解决上述局限性,这项工作提出了SVD-NAS框架,该框架将低级近似和神经体系结构搜索的域结合在一起。 SVD-NAS通用并扩展了以前作品的设计选择,通过引入低级别的建筑空间LR空间,这是一个更细粒度的低级别近似设计空间。之后,这项工作提出了基于梯度的搜索,以有效地穿越LR空间。对可能的设计选择的更精细,更彻底的探索导致了CNN模型的参数,失败和潜伏期的提高精度以及降低。结果表明,在数据限制问题设置下,SVD-NAS的成像网上的精度比最新方法高2.06-12.85pp。 SVD-NAS在https://github.com/yu-zhewen/svd-nas上开源。
translated by 谷歌翻译
培训低级的深层神经网络,即使用分解层,特别是社区感兴趣的:它在记忆消耗和训练时间方面提供了对未分离培训的效率。先前的工作集中在预训练的网络的低级近似值和低级空间中的培训中,并提供了其他目标,为所选实践提供了各种临时解释。我们分析了在实践中运作良好的技术,并通过对诸如GPT2之类的模型进行广泛的消融,我们提供了证据表明该领域的共同信念,这暗示着令人兴奋的研究机会仍然需要回答。
translated by 谷歌翻译
大型的语言模型(PRELMS)正在彻底改变所有基准的自然语言处理。但是,它们的巨大尺寸对于小型实验室或移动设备上的部署而言是过分的。修剪和蒸馏等方法可减少模型尺寸,但通常保留相同的模型体系结构。相反,我们探索了蒸馏预告片中的更有效的架构,单词的持续乘法(CMOW),该构造将每个单词嵌入为矩阵,并使用矩阵乘法来编码序列。我们扩展了CMOW体系结构及其CMOW/CBOW-HYBRID变体,具有双向组件,以提供更具表现力的功能,在预绘制期间进行一般(任务无义的)蒸馏的单次表示,并提供了两种序列编码方案,可促进下游任务。句子对,例如句子相似性和自然语言推断。我们的基于矩阵的双向CMOW/CBOW-HYBRID模型在问题相似性和识别文本范围内的Distilbert具有竞争力,但仅使用参数数量的一半,并且在推理速度方面快三倍。除了情感分析任务SST-2和语言可接受性任务COLA外,我们匹配或超过ELMO的ELMO分数。但是,与以前的跨架结构蒸馏方法相比,我们证明了检测语言可接受性的分数增加了一倍。这表明基于基质的嵌入可用于将大型预赛提炼成竞争模型,并激励朝这个方向进行进一步的研究。
translated by 谷歌翻译
我们为大规模训练的大规模训练语言模型提供了更简单,更稀疏,更快的算法,这些算法在许多标准的NLP任务上实现了最新的隐私与实用性权衡。我们为此问题提出了一个元框架,这是受高度参数效率方法进行微调成功的启发。我们的实验表明,这些方法的差异化适应能力在三个重要方面优于以前的私人算法:实用程序,隐私以及私人培训的计算和记忆成本。在许多经常研究的数据集中,私人模型的实用性接近了非私人模型的方法。例如,在MNLI数据集上,我们使用Roberta-large的准确度为87.8 \%$,使用Roberta-Base $ 83.5 \%$,其隐私预算为$ \ Epsilon = 6.7 $。相比之下,缺乏隐私限制,罗伯塔·莱格(Roberta-Large)的准确度为$ 90.2 \%$。我们的发现对于自然语言生成任务类似。与DART,GPT-2-SMALL,GPT-2中,GPT-2-MEDIUM,GPT-2-LARGE和GPT-2-XL的私人微调达到38.5、42.0、43.1和43.8($ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 43.8) epsilon = 6.8,\ delta = $ 1E-5),而非私人基线为$ 48.1 $。我们所有的实验都表明,较大的模型更适合私人微调:虽然众所周知,它们旨在非优先实现卓越的准确性,但我们发现当引入隐私时,它们也更好地保持其准确性。
translated by 谷歌翻译
有效地近似损失函数的局部曲率信息是用于深神经网络的优化和压缩的关键工具。然而,大多数现有方法近似二阶信息具有高计算或存储成本,这可以限制其实用性。在这项工作中,我们调查矩阵,用于估计逆象征的矢量产品(IHVPS)的矩阵线性时间方法,因为当Hessian可以近似为乘语 - 一个矩阵的总和时,如Hessian的经典近似由经验丰富的Fisher矩阵。我们提出了两个新的算法作为称为M-FAC的框架的一部分:第一个算法朝着网络压缩量身定制,如果Hessian给出了M $等级的总和,则可以计算Dimension $ D $的IHVP。 ,使用$ O(DM ^ 2)$预压制,$ O(DM)$代价计算IHVP,并查询逆Hessian的任何单个元素的费用$ O(m)$。第二算法针对优化设置,我们希望在反向Hessian之间计算产品,估计在优化步骤的滑动窗口和给定梯度方向上,根据预先说明的SGD所需的梯度方向。我们为计算IHVP和OHVP和O(DM + M ^ 3)$ of $ o(dm + m ^ 2)$提供算法,以便从滑动窗口添加或删除任何渐变。这两种算法产生最先进的结果,用于网络修剪和相对于现有二阶方法的计算开销的优化。在[9]和[17]可用实现。
translated by 谷歌翻译
我们为深神经网络提出了一种新的全球压缩框架,它自动分析每个层以识别最佳的每个层压缩比,同时实现所需的整体压缩。我们的算法通过将其通道切入多个组并通过低秩分解来分解每个组来铰接压缩每个卷积(或完全连接)层的想法。在我们的算法的核心处于从Eckart Young MiRSKY定理中推导了层面错误界限的推导。然后,我们利用这些界限将压缩问题框架作为优化问题,我们希望最小化层次的最大压缩误差并提出朝向解决方案的有效算法。我们的实验表明,我们的方法优于各种网络和数据集的现有低级压缩方法。我们认为,我们的结果为未来的全球性能大小的研究开辟了新的途径,即现代神经网络的全球性能大小。我们的代码可在https://github.com/lucaslie/torchprune获得。
translated by 谷歌翻译
尽管大型预训练的模型已在各种下游任务上取得了令人印象深刻的结果,但最大的现有模型仍然会犯错,甚至准确的预测可能会随着时间的流逝而过时。因为在训练时间检测所有此类故障是不可能的,因此可以使此类模型的开发人员和最终用户能够纠正不准确的输出,同时希望将模型保持完整。但是,大型神经网络学到的表示形式的分布式黑盒性质使得产生这种目标编辑困难。如果仅出现单个有问题的输入和新的所需输出,则微调方法往往过于fit。当应用于非常大的模型时,其他编辑算法在计算上是不可行的,要么简单地无效。为了启用大规模的简单事后编辑,我们建议使用梯度分解(MEND)提出模型编辑器网络,该网络是一个小型辅助编辑网络的集合,该网络使用单个所需的输入输出对将快速的本地编辑对预先训练的模型进行快速的本地编辑。行为。 MEND学习使用标准微调获得的梯度,使用梯度的低排放分解来使该转换可牵引的参数化。即使在100亿+参数模型中,也可以在不到一天的时间内对单个GPU进行修订;经过训练的修补后,可以将新编辑快速应用于预训练的模型。我们对T5,GPT,BERT和BART模型的实验表明,MEND是模型编辑的唯一方法,该方法有效地编辑了具有超过100亿参数的模型的行为。代码和数据可在https://sites.google.com/view/mend-editing。
translated by 谷歌翻译
张量分解是由于能够揭示复杂结构之间的潜在关系的能力,是深度卷积神经网络模型压缩的基本技术之一。但是,大多数现有方法通过层压缩网络层,这不能提供令人满意的解决方案来实现全局优化。在本文中,我们提出了一种模型减少方法,用于使用卷积层的低级张量分解来压缩预先训练的网络。我们的方法基于优化技术来选择分解网络层的适当等级。建议一种新的正则化方法,称为漏斗功能,以抑制压缩过程中不重要的因素,因此可以更容易地揭示适当的等级。实验结果表明,我们的算法可以减少比其他张量压缩方法更多的模型参数。对于Reset18具有ImageNet2012,我们的减少模型可以在GMAC方面达到超过TWI时间,只有0.7%的前1个精度下降,这效果优于两个度量标准中的最多方法。
translated by 谷歌翻译
近年来,大型预训练的变压器网络已显示出许多自然语言理解任务的巨大改进。但是,由于延迟和成本限制,这些模型的巨大规模给他们的微调和在线部署带来了重大挑战。支持N:M半结构化的稀疏性和低精油整数计算的新硬件是提高DNN模型效率的有前途解决方案。但是,很少有研究系统地研究预先训练的变压器网络在多大程度上受益于这些技术的组合,以及如何最好地压缩变压器的每个组件。我们提出了一个灵活的压缩框架NXMiformer,该框架使用ADMM和基于Ste的QAT执行同时进行稀疏和量化。此外,我们介绍且廉价的启发式驱动搜索算法,该算法标识了满足压缩比约束的有希望的异质压缩配置。当通过NLU基准测试的胶水套件进行评估时,我们的方法可以达到BERT模型编码器的93%压缩,同时保留了98.2%的原始模型准确性并充分利用硬件功能。异质配置通过搜索启发式发现了基线准确性的99.5%,同时仍将模型压缩为87.5%。
translated by 谷歌翻译