我们引入了三种算法,将模拟重力数据倒入3D地下岩石/流属性。第一种算法是一种基于数据驱动的,基于深度学习的方法,第二个算法将深度学习方法与物理建模混合到单个工作流程中,第三个考虑了表面重力监测的时间依赖性。这些提出的算法的目标应用是地下CO $ _2 $李子作为监视CO $ _2 $固存部部署的补充工具的预测。每种提出的算法的表现都优于传统的反转方法,并在几乎实时实时产生高分辨率的3D地下重建。我们提出的方法以$ \ mu $ gals的形式获得了预测的羽状几何形状和接近完美数据失误的骰子得分。这些结果表明,将4D表面重力监测与深度学习技术相结合代表了一种低成本,快速和非侵入性的方法,用于监测CO $ _2 $存储站点。
translated by 谷歌翻译
在地质不确定性下,快速同化监测数据以更新压力累积和压力累积和二氧化碳(CO2)羽流迁移的预测是地质碳储存中的一个具有挑战性的问题。具有高维参数空间的数据同化的高计算成本阻碍了商业规模库管理的快速决策。我们建议利用具有深度学习技术的多孔介质流动行为的物理理解,以开发快速历史匹配 - 水库响应预测工作流程。应用集合更顺畅的多数据同化框架,工作流程更新地质特性,并通过通过地震反转解释的压力历史和二氧化碳羽毛的量化不确定性来预测水库性能。由于这种工作流程中最具计算昂贵的组件是储层模拟,我们开发了代理模型,以在多孔注射下预测动态压力和CO2羽流量。代理模型采用深度卷积神经网络,具体地,宽的剩余网络和残留的U-Net。该工作流程针对代表碎屑货架沉积环境的扁平三维储层模型验证。智能处理应用于真正的3D储层模型中数量与单层储层模型之间的桥梁。工作流程可以在主流个人工作站上不到一小时内完成历史匹配和储库预测,在不到一小时内。
translated by 谷歌翻译
Delimiting salt inclusions from migrated images is a time-consuming activity that relies on highly human-curated analysis and is subject to interpretation errors or limitations of the methods available. We propose to use migrated images produced from an inaccurate velocity model (with a reasonable approximation of sediment velocity, but without salt inclusions) to predict the correct salt inclusions shape using a Convolutional Neural Network (CNN). Our approach relies on subsurface Common Image Gathers to focus the sediments' reflections around the zero offset and to spread the energy of salt reflections over large offsets. Using synthetic data, we trained a U-Net to use common-offset subsurface images as input channels for the CNN and the correct salt-masks as network output. The network learned to predict the salt inclusions masks with high accuracy; moreover, it also performed well when applied to synthetic benchmark data sets that were not previously introduced. Our training process tuned the U-Net to successfully learn the shape of complex salt bodies from partially focused subsurface offset images.
translated by 谷歌翻译
医学成像深度学习模型通常是大而复杂的,需要专门的硬件来训练和评估这些模型。为了解决此类问题,我们提出了PocketNet范式,以减少深度学习模型的规模,通过促进卷积神经网络中的渠道数量的增长。我们证明,对于一系列的分割和分类任务,PocketNet架构产生的结果与常规神经网络相当,同时将参数数量减少多个数量级,最多使用90%的GPU记忆,并加快训练时间的加快。高达40%,从而允许在资源约束设置中培训和部署此类模型。
translated by 谷歌翻译
传统上,基于标度律维模型已被用于参数对流换热岩类地行星像地球,火星,水星和金星的内部,以解决二维或三维高保真前插的计算瓶颈。然而,这些在物理它们可以建模(例如深度取决于材料特性),并预测只平均量的量的限制,例如平均温度地幔。我们最近发现,前馈神经网络(FNN),使用了大量的二维模拟可以克服这个限制和可靠地预测整个1D横向平均温度分布的演变,及时为复杂的模型训练。我们现在扩展该方法以预测的完整2D温度字段,它包含在对流结构如热羽状和冷downwellings的形式的信息。使用的地幔热演化的10,525二维模拟数据集火星般的星球,我们表明,深度学习技术能够产生可靠的参数代理人(即代理人即预测仅基于参数状态变量,如温度)底层偏微分方程。我们首先使用卷积自动编码由142倍以压缩温度场,然后使用FNN和长短期存储器网络(LSTM)来预测所述压缩字段。平均起来,FNN预测是99.30%,并且LSTM预测是准确相对于看不见模拟99.22%。在LSTM和FNN预测显示,尽管较低的绝对平均相对精度,LSTMs捕捉血流动力学优于FNNS适当的正交分解(POD)。当求和,从FNN预测和从LSTM预测量至96.51%,相对97.66%到原始模拟的系数,分别与POD系数。
translated by 谷歌翻译
物理信息的神经网络(PINN)是神经网络(NNS),它们作为神经网络本身的组成部分编码模型方程,例如部分微分方程(PDE)。如今,PINN是用于求解PDE,分数方程,积分分化方程和随机PDE的。这种新颖的方法已成为一个多任务学习框架,在该框架中,NN必须在减少PDE残差的同时拟合观察到的数据。本文对PINNS的文献进行了全面的综述:虽然该研究的主要目标是表征这些网络及其相关的优势和缺点。该综述还试图将出版物纳入更广泛的基于搭配的物理知识的神经网络,这些神经网络构成了香草·皮恩(Vanilla Pinn)以及许多其他变体,例如物理受限的神经网络(PCNN),各种HP-VPINN,变量HP-VPINN,VPINN,VPINN,变体。和保守的Pinn(CPINN)。该研究表明,大多数研究都集中在通过不同的激活功能,梯度优化技术,神经网络结构和损耗功能结构来定制PINN。尽管使用PINN的应用范围广泛,但通过证明其在某些情况下比有限元方法(FEM)等经典数值技术更可行的能力,但仍有可能的进步,最著名的是尚未解决的理论问题。
translated by 谷歌翻译
我们展示了OpenFWI,是用于地震全波形反演(FWI)的大型开源基准数据集的集合。OpenFWI是地球科学和机器学习界的一流,以促进对基于机器学习的FWI多元化,严谨和可重复的研究。OpenFWI包括多个尺度的数据集,包含不同的域,涵盖各种级别的模型复杂性。除了数据集之外,我们还对每个数据集进行实证研究,具有完全卷积的深度学习模型。OpenFWI已被核心维护,并将通过新数据和实验结果定期更新。我们感谢社区的投入,帮助我们进一步改进OpenFWI。在当前版本,我们在OpenFWI中发布了七个数据集,其中为3D FWI指定了一个,其余的是2D场景。所有数据集和相关信息都可以通过我们的网站访问https://openfwi.github.io/。
translated by 谷歌翻译
有希望的方法来改善气候模型中的云参数化,因此气候预测是使用深度学习与来自Storm-解析模型(SRM)模拟的培训数据结合使用。 ICOSAHEDRAL非静水压(图标)建模框架允许模拟从数值天气预报到气候投影,使其成为开发基于神经网络(NN)的子网比例过程的参数化的理想目标。在图标框架内,我们通过基于逼真的区域和全局图标SRM模拟培训基于NN的云覆盖参数化。我们设置了三种不同类型的NNS,其垂直局部程度不同,它们假设从粗粒粒度大气状态变量诊断云盖。 NNS精确地从粗粒数据中估计子网格尺度云覆盖,该数据具有与其训练数据相似的地理特征。此外,全球培训的NNS可以再现区域SRM仿真的子网格级云覆盖。使用基于游戏理论的可解释性库福芙添加剂解释,我们识别特定湿度和云冰上的过分传播,以及我们基于列的NN不能从全局到区域粗粒度SRM数据完全概括的原因。该解释工具还有助于可视化区域和全球训练的基于列的NNS之间的特征重要性的相似性和差异,并在其云覆盖预测和热力学环境之间揭示了本地关系。我们的结果表明,深度学习的潜力从全球SRMS获得准确但可解释的云覆盖参数化,并表明基于邻域的模型可能是精度和概括性之间的良好折衷。
translated by 谷歌翻译
延时电阻率断层扫描(ERT)是一种流行的地球物理方法,可从电势差测量中估算三维(3D)通透性场。传统的反转和数据同化方法用于将这些数据吸收到水域模型中以估计渗透性。由于不适合性和维度的诅咒,现有的反转策略提供了较差的估计值和3D渗透率场的低分辨率。深度学习的最新进展为我们提供了强大的算法来克服这一挑战。本文提出了一个深度学习(DL)框架,以估算从延时ERT数据中的3D地下渗透性。为了测试所提出的框架的可行性,我们在模拟数据上训练了启用DL的逆模型。基于水域物理学的地下过程模型用于生成此合成数据以进行深度学习分析。结果表明,拟议的弱监督学习可以捕获3D渗透性领域中的显着空间特征。在数量上,在标记的训练,验证和测试数据集的平均平方平方误差(就自然日志而言)小于0.5。 R2评分(全局度量)大于0.75,每个单元格(本地度量)的百分比误差小于10%。最后,在计算成本方面的额外好处是,所提出的基于DL的反向模型至少比运行正向模型快的速度(104)倍。请注意,传统倒置可能需要多个前向模型模拟(例如,按10到1000的顺序),这非常昂贵。这种计算节省(O(105)-O(107))使提出的基于DL的逆模型具有对地下成像和实时ERT监视应用程序的吸引力,这是由于快速而相当准确的渗透性场估计。
translated by 谷歌翻译
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using computer vision and machine learning for X-ray analysis in industrial production and security applications and covers the applications, techniques, evaluation metrics, datasets, and performance comparison of those techniques on publicly available datasets. We also highlight some drawbacks in the published research and give recommendations for future research in computer vision-based X-ray analysis.
translated by 谷歌翻译
这本数字本书包含在物理模拟的背景下与深度学习相关的一切实际和全面的一切。尽可能多,所有主题都带有Jupyter笔记本的形式的动手代码示例,以便快速入门。除了标准的受监督学习的数据中,我们将看看物理丢失约束,更紧密耦合的学习算法,具有可微分的模拟,以及加强学习和不确定性建模。我们生活在令人兴奋的时期:这些方法具有从根本上改变计算机模拟可以实现的巨大潜力。
translated by 谷歌翻译
Recent years have witnessed a growth in mathematics for deep learning--which seeks a deeper understanding of the concepts of deep learning with mathematics, and explores how to make it more robust--and deep learning for mathematics, where deep learning algorithms are used to solve problems in mathematics. The latter has popularised the field of scientific machine learning where deep learning is applied to problems in scientific computing. Specifically, more and more neural network architectures have been developed to solve specific classes of partial differential equations (PDEs). Such methods exploit properties that are inherent to PDEs and thus solve the PDEs better than classical feed-forward neural networks, recurrent neural networks, and convolutional neural networks. This has had a great impact in the area of mathematical modeling where parametric PDEs are widely used to model most natural and physical processes arising in science and engineering, In this work, we review such methods and extend them for parametric studies as well as for solving the related inverse problems. We equally proceed to show their relevance in some industrial applications.
translated by 谷歌翻译
高维时空动力学通常可以在低维子空间中编码。用于建模,表征,设计和控制此类大规模系统的工程应用通常依赖于降低尺寸,以实时计算解决方案。降低维度的常见范例包括线性方法,例如奇异值分解(SVD)和非线性方法,例如卷积自动编码器(CAE)的变体。但是,这些编码技术缺乏有效地表示与时空数据相关的复杂性的能力,后者通常需要可变的几何形状,非均匀的网格分辨率,自适应网格化和/或参数依赖性。为了解决这些实用的工程挑战,我们提出了一个称为神经隐式流(NIF)的一般框架,该框架可以实现大型,参数,时空数据的网格不稳定,低级别表示。 NIF由两个修改的多层感知器(MLP)组成:(i)shapenet,它分离并代表空间复杂性,以及(ii)参数,该参数解释了任何其他输入复杂性,包括参数依赖关系,时间和传感器测量值。我们演示了NIF用于参数替代建模的实用性,从而实现了复杂时空动力学的可解释表示和压缩,有效的多空间质量任务以及改善了稀疏重建的通用性能。
translated by 谷歌翻译
相位场建模是一种有效但计算昂贵的方法,用于捕获材料中的中尺度形态和微观结构演化。因此,需要快速且可推广的替代模型来减轻计算征税流程的成本,例如在材料的优化和设计中。尖锐相边界的存在所产生的物理现象的固有不连续性使替代模型的训练繁琐。我们开发了一个框架,该框架将卷积自动编码器架构与深神经操作员(DeepOnet)集成在一起,以了解两相混合物的动态演化,并加速预测微结构演变的时间。我们利用卷积自动编码器在低维的潜在空间中提供微观结构数据的紧凑表示。 DeepOnet由两个子网络组成,一个用于编码固定数量的传感器位置(分支网)的输入函数,另一个用于编码输出功能的位置(TRUNK NET),了解微观结构Evolution的中尺度动力学从自动编码器潜在空间。然后,卷积自动编码器的解码器部分从deponet预测中重建了时间进化的微结构。然后,可以使用训练有素的DeepOnet架构来替换插值任务中的高保真相位数值求解器或在外推任务中加速数值求解器。
translated by 谷歌翻译
了解极端事件及其可能性是研究气候变化影响,风险评估,适应和保护生物的关键。在这项工作中,我们开发了一种方法来构建极端热浪的预测模型。这些模型基于卷积神经网络,对极长的8,000年气候模型输出进行了培训。由于极端事件之间的关系本质上是概率的,因此我们强调概率预测和验证。我们证明,深度神经网络适用于法国持续持续14天的热浪,快速动态驱动器提前15天(500 hpa地球电位高度场),并且在慢速较长的交货时间内,慢速物理时间驱动器(土壤水分)。该方法很容易实现和通用。我们发现,深神经网络选择了与北半球波数字3模式相关的极端热浪。我们发现,当将2米温度场添加到500 HPA地球电位高度和土壤水分场中时,2米温度场不包含任何新的有用统计信息。主要的科学信息是,训练深层神经网络预测极端热浪的发生是在严重缺乏数据的情况下发生的。我们建议大多数其他应用在大规模的大气和气候现象中都是如此。我们讨论了处理缺乏数据制度的观点,例如罕见的事件模拟,以及转移学习如何在后一种任务中发挥作用。
translated by 谷歌翻译
In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-na\"ive segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-na\"ive segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-na\"ive segmentation networks (AUC up to 0.874).
translated by 谷歌翻译
识别异质电导率场并重建污染物释放历史是地下修复的关键方面。通过有限和嘈杂的液压头和集中度测量实现这两个目标是具有挑战性的。这些障碍包括解决高维参数的反问题,以及重复前进建模所需的高计算成本。我们使用卷积对抗自动编码器(CAAE)进行异质非高斯电导率场的参数化,并具有低维的潜在表示。此外,我们训练了三维密集的卷积编码器(密集)网络,以作为流和运输过程的正向替代。结合了CAAE和密度向前的替代模型,使用多个数据同化(ESMDA)算法的整体更平滑,用于从未知参数的贝叶斯后分布中进行采样,形成CAAE密集的ESMDA反转框架。我们在三维污染物源和电导率域识别问题中应用了这种CAAE密集的ESMDA反转框架。提供了CAAE-ESMDA与物理流和运输模拟器和CAAE密度浓度ESMDA的反转结果的比较,这表明以更高的计算效率实现了准确的重建结果。
translated by 谷歌翻译
海洋生态系统及其鱼类栖息地越来越重要,因为它们在提供有价值的食物来源和保护效果方面的重要作用。由于它们的偏僻且难以接近自然,因此通常使用水下摄像头对海洋环境和鱼类栖息地进行监测。这些相机产生了大量数字数据,这些数据无法通过当前的手动处理方法有效地分析,这些方法涉及人类观察者。 DL是一种尖端的AI技术,在分析视觉数据时表现出了前所未有的性能。尽管它应用于无数领域,但仍在探索其在水下鱼类栖息地监测中的使用。在本文中,我们提供了一个涵盖DL的关键概念的教程,该教程可帮助读者了解对DL的工作原理的高级理解。该教程还解释了一个逐步的程序,讲述了如何为诸如水下鱼类监测等挑战性应用开发DL算法。此外,我们还提供了针对鱼类栖息地监测的关键深度学习技术的全面调查,包括分类,计数,定位和细分。此外,我们对水下鱼类数据集进行了公开调查,并比较水下鱼类监测域中的各种DL技术。我们还讨论了鱼类栖息地加工深度学习的新兴领域的一些挑战和机遇。本文是为了作为希望掌握对DL的高级了解,通过遵循我们的分步教程而为其应用开发的海洋科学家的教程,并了解如何发展其研究,以促进他们的研究。努力。同时,它适用于希望调查基于DL的最先进方法的计算机科学家,以进行鱼类栖息地监测。
translated by 谷歌翻译
Weather forecasting centers currently rely on statistical postprocessing methods to minimize forecast error. This improves skill but can lead to predictions that violate physical principles or disregard dependencies between variables, which can be problematic for downstream applications and for the trustworthiness of postprocessing models, especially when they are based on new machine learning approaches. Building on recent advances in physics-informed machine learning, we propose to achieve physical consistency in deep learning-based postprocessing models by integrating meteorological expertise in the form of analytic equations. Applied to the post-processing of surface weather in Switzerland, we find that constraining a neural network to enforce thermodynamic state equations yields physically-consistent predictions of temperature and humidity without compromising performance. Our approach is especially advantageous when data is scarce, and our findings suggest that incorporating domain expertise into postprocessing models allows to optimize weather forecast information while satisfying application-specific requirements.
translated by 谷歌翻译
计算流体动力学(CFD)模拟广泛应用于工程和物理学。流体动力学的标准描述需要在不同的流动方案中求解Navier-Stokes(N-S)方程。然而,CFD仿真的应用是通过高性能计算的可用性,速度和平行性计算的。为了提高计算效率,已用于为CFD创建加速数据驱动近似的机器学习技术。大多数此类方法依赖于大型标记的CFD数据集,其昂贵以在构建强大的数据驱动模型所需的规模上获得。我们使用具有边界和几何条件的多通道输入,在各种边界条件下开发一种弱监控的方法来解决各种边界条件下的稳态N-S方程。我们在没有任何标记的仿真数据的情况下实现最先进的结果,但是使用自定义数据驱动和物理信息的丢失功能,通过使用和小规模的解决方案来赋予模型来解决N-S方程。为了提高分辨率和可预测性,我们培训堆叠模型的增加复杂性为N-S方程产生数值解。没有昂贵的计算,我们的模型以各种障碍和边界条件实现了高可预测性。鉴于其高灵活性,该模型可以在64×64域内在常规桌面计算机上以5毫秒的5毫秒生成解决方案,比常规CFD求解器快1000倍。在本地消费者计算硬件上的交互式CFD仿真翻译在数据传输令人望而越令人望而越来越多,可以提高边值流体问题的尺度,速度和计算成本,可以在实时预测上进行新的应用。
translated by 谷歌翻译