这项研究采用无限脉冲响应(IIR)图神经网络(GNN),有效地对智能网格数据的固有图形网络结构进行建模,以解决网络攻击本地化问题。首先,我们通过数值分析有限脉冲响应(FIR)和IIR图过滤器(GFS)的经验频率响应,以近似理想的光谱响应。我们表明,对于相同的滤波器顺序,IIR GF可以更好地近似所需的光谱响应,并且由于其合理类型的滤镜响应,它们也与较低阶GF的近似值相同。其次,我们提出了一个IIR GNN模型,以有效预测总线上的网络攻击的存在。最后,我们在样本(SW)和BUS(BW)水平的各种网络攻击下评估了模型,并将结果与​​现有架构进行比较。经过实验验证的是,所提出的模型的表现分别优于最先进的FIR GNN模型,分别在SW和BW定位方面分别优于9.2%和14%。
translated by 谷歌翻译
作为一种高度复杂和集成的网络物理系统,现代电网暴露于网络攻击。假数据注入攻击(FDIAS),具体地,通过针对测量数据的完整性来表示对智能电网的主要类别威胁。虽然已经提出了各种解决方案来检测那些网络攻击,但绝大多数作品忽略了电网测量的固有图结构,并仅验证了其检测器,仅针对小于几百辆公共汽车的小型测试系统。为了更好地利用智能电网测量的空间相关性,本文提出了使用Chebyshev Graph卷积网络(CGCN)的大规模交流电网中的网络内人检测深度学习模型。通过降低光谱滤波器的复杂性并使它们本地化,CGCN提供了一种快速高效的卷积操作,以模拟图形结构智能电网数据。我们在数值上验证所提出的CGCN的探测器在7.86以7.86以7.67以带有2848辆总线的大型电网的误报率的7.86以7.86的误报。所值得注意的是,所提出的方法检测为2848辆总线系统的4毫秒下的网络攻击,这使其成为大型系统中的网络内攻击的良好候选者。
translated by 谷歌翻译
This paper presents a Temporal Graph Neural Network (TGNN) framework for detection and localization of false data injection and ramp attacks on the system state in smart grids. Capturing the topological information of the system through the GNN framework along with the state measurements can improve the performance of the detection mechanism. The problem is formulated as a classification problem through a GNN with message passing mechanism to identify abnormal measurements. The residual block used in the aggregation process of message passing and the gated recurrent unit can lead to improved computational time and performance. The performance of the proposed model has been evaluated through extensive simulations of power system states and attack scenarios showing promising performance. The sensitivity of the model to intensity and location of the attacks and model's detection delay versus detection accuracy have also been evaluated.
translated by 谷歌翻译
大规模结构化数据的有效表示,进攻,分析和可视化在图形上引起了很多关注。到目前为止,大多数文献都集中在实现的信号上。但是,信号通常在傅立叶域中稀疏,并且可以使用其光谱组件的复杂信封来获得更多信息和紧凑的表示形式,而不是原始的真实价值信号。出于这一事实的激励,在这项工作中,我们将图形卷积神经网络(GCN)推广到复杂域,从而得出了允许将复杂值的图形移位运算符(GSO)纳入图形过滤器(GF)和过程的理论。复杂值图形信号(GS)。开发的理论可以处理时空复杂的网络过程。我们证明,相对于基础图支持的扰动,传输误差的界限以及通过乘积层传播的界限,复合物值GCN是稳定的。然后,我们将复杂的GCN应用于电网状态预测,电网网络攻击检测和定位。
translated by 谷歌翻译
我们提出了一种基于图形神经网络(GNN)的端到端框架,以平衡通用网格中的功率流。优化被帧为监督的顶点回归任务,其中GNN培训以预测每个网格分支的电流和功率注入,从而产生功率流量平衡。通过将电网表示为与顶点的分支的线图,我们可以培训一个更准确和强大的GNN来改变底层拓扑。此外,通过使用专门的GNN层,我们能够构建一个非常深的架构,该架构占图表上的大街区,同时仅实现本地化操作。我们执行三个不同的实验来评估:i)使用深入GNN模型时使用本地化而不是全球运营的好处和趋势; ii)图形拓扑中对扰动的弹性;和iii)能力同时在多个网格拓扑上同时培训模型以及新的看不见网格的概括性的改进。拟议的框架是有效的,而且与基于深度学习的其他求解器相比,不仅对网格组件上的物理量而且对拓扑的物理量具有鲁棒性。
translated by 谷歌翻译
In this work, we are interested in generalizing convolutional neural networks (CNNs) from low-dimensional regular grids, where image, video and speech are represented, to high-dimensional irregular domains, such as social networks, brain connectomes or words' embedding, represented by graphs. We present a formulation of CNNs in the context of spectral graph theory, which provides the necessary mathematical background and efficient numerical schemes to design fast localized convolutional filters on graphs. Importantly, the proposed technique offers the same linear computational complexity and constant learning complexity as classical CNNs, while being universal to any graph structure. Experiments on MNIST and 20NEWS demonstrate the ability of this novel deep learning system to learn local, stationary, and compositional features on graphs.
translated by 谷歌翻译
Recent studies have demonstrated that smart grids are vulnerable to stealthy false data injection attacks (SFDIAs), as SFDIAs can bypass residual-based bad data detection mechanisms. The SFDIA detection has become one of the focuses of smart grid research. Methods based on deep learning technology have shown promising accuracy in the detection of SFDIAs. However, most existing methods rely on the temporal structure of a sequence of measurements but do not take account of the spatial structure between buses and transmission lines. To address this issue, we propose a spatiotemporal deep network, PowerFDNet, for the SFDIA detection in AC-model power grids. The PowerFDNet consists of two sub-architectures: spatial architecture (SA) and temporal architecture (TA). The SA is aimed at extracting representations of bus/line measurements and modeling the spatial structure based on their representations. The TA is aimed at modeling the temporal structure of a sequence of measurements. Therefore, the proposed PowerFDNet can effectively model the spatiotemporal structure of measurements. Case studies on the detection of SFDIAs on the benchmark smart grids show that the PowerFDNet achieved significant improvement compared with the state-of-the-art SFDIA detection methods. In addition, an IoT-oriented lightweight prototype of size 52 MB is implemented and tested for mobile devices, which demonstrates the potential applications on mobile devices. The trained model will be available at \textit{https://github.com/HubYZ/PowerFDNet}.
translated by 谷歌翻译
非线性状态估计(SE)的目的是根据电力系统中所有可用的测量值估算复杂的总线电压,通常使用迭代的高斯 - 纽顿方法来解决。在考虑来自相组量测量单元以及监督控制和数据采集系统的输入时,非线性SE会带来一些困难。这些包括数值不稳定性,收敛时间取决于迭代方法的起点以及单个迭代在状态变量数量方面的二次计算复杂性。本文在非线性功率系统SE的增强因子图上介绍了基于图形神经网络的原始SE实现,能够在分支机构和总线上进行测量,以及相法和遗留测量。提出的回归模型在一旦训练的推理时间内具有线性计算复杂性,并且有可能实现分布式。由于该方法是非词语且基于非矩阵的,因此它对高斯求解器容易出现的问题具有弹性。除了测试集的预测准确性外,提出的模型在模拟网络攻击和由于沟通不规则引起的不可观察的情况时表现出了鲁棒性。在这种情况下,预测错误在本地持续存在,对电力系统的其余结果没有影响。
translated by 谷歌翻译
随着智能设备的扩散和通信中的旋转,配电系统逐渐从被动,手动操作和不灵活的,到大规模互连的网络物理智能电网,以解决未来的能源挑战。然而,由于部署的大规模复杂性和资源限制,若干尖端技术的集成引入了几种安全和隐私漏洞。最近的研究趋势表明,虚假数据注入(FDI)攻击正成为整个智能电网范式内最恶毒的网络威胁之一。因此,本文介绍了对积极分配系统内的直接投资袭击事件的最近进展的全面调查,并提出了分类法,以对智能电网目标进行外商直接投资威胁。相关研究与攻击方法和对电力分配网络的影响形成鲜明对比和总结。最后,我们确定了一些研究差距并推荐了一些未来的研究方向,以指导和激励前瞻性研究人员。
translated by 谷歌翻译
Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
translated by 谷歌翻译
基于光谱的图形神经网络(SGNNS)在图表表示学习中一直吸引了不断的关注。然而,现有的SGNN是限于实现具有刚性变换的曲线滤波器(例如,曲线图傅立叶或预定义的曲线波小波变换)的限制,并且不能适应驻留在手中的图形和任务上的信号。在本文中,我们提出了一种新颖的图形神经网络,实现了具有自适应图小波的曲线图滤波器。具体地,自适应图表小波通过神经网络参数化提升结构学习,其中开发了基于结构感知的提升操作(即,预测和更新操作)以共同考虑图形结构和节点特征。我们建议基于扩散小波提升以缓解通过分区非二分类图引起的结构信息损失。通过设计,得到了所得小波变换的局部和稀疏性以及提升结构的可扩展性。我们进一步通过在学习的小波中学习稀疏图表表示来引导软阈值滤波操作,从而产生局部,高效和可伸缩的基于小波的图形滤波器。为了确保学习的图形表示不变于节点排列,在网络的输入中采用层以根据其本地拓扑信息重新排序节点。我们在基准引用和生物信息图形数据集中评估节点级和图形级别表示学习任务的所提出的网络。大量实验在准确性,效率和可扩展性方面展示了在现有的SGNN上的所提出的网络的优越性。
translated by 谷歌翻译
多模式数据通过将来自来自各个域的数据与具有非常不同的统计特性的数据集成来提供自然现象的互补信息。捕获多模式数据的模态和跨换体信息是多模式学习方法的基本能力。几何感知数据分析方法通过基于其几何底层结构隐式表示各种方式的数据来提供这些能力。此外,在许多应用中,在固有的几何结构上明确地定义数据。对非欧几里德域的深度学习方法是一个新兴的研究领域,最近在许多研究中被调查。大多数流行方法都是为单峰数据开发的。本文提出了一种多模式多缩放图小波卷积网络(M-GWCN)作为端到端网络。 M-GWCN同时通过应用多尺度图小波变换来找到模态表示,以在每个模态的图形域中提供有用的本地化属性,以及通过学习各种方式之间的相关性的学习置换的跨模式表示。 M-GWCN不限于具有相同数量的数据的均匀模式,或任何指示模式之间的对应关系的现有知识。已经在三个流行的单峰显式图形数据集和五个多模式隐式界面进行了几个半监督节点分类实验。实验结果表明,与光谱图域卷积神经网络和最先进的多模式方法相比,所提出的方法的优越性和有效性。
translated by 谷歌翻译
在大数据的时代,基于数据驱动的分类已成为智能制造业的基本方法,以指导生产和优化检查。实践中获得的工业数据通常是由软传感器收集的时间序列数据,这是高度非线性,非间断,不平衡和嘈杂的。大多数现有的软传感机器学习模型侧重于捕获串联内部时间依赖关系或预定义的序列间相关性,同时忽略标签之间的相关性,每个实例同时与多个标签相关联。在本文中,我们提出了一种基于曲线的新颖的曲线图,用于多变量时间序列分类噪声和高度不平衡的软感测数据。所提出的基层能够在光谱域中捕获串联串联和串联系列依赖项; 2)通过叠加由统计共生信息构建的标签图来利用标签相关性; 3)从文本和数值域中使用注意机制学习功能; 4)利用未标记的数据并通过半监督学习缓解数据不平衡。与其他常用分类器的比较研究在希捷软感测数据上进行,实验结果验证了我们提出的方法的竞争性能。
translated by 谷歌翻译
图形卷积网络(GCN)已被证明是一个有力的概念,在过去几年中,已成功应用于许多领域的各种任务。在这项工作中,我们研究了为GCN定义铺平道路的理论,包括经典图理论的相关部分。我们还讨论并在实验上证明了GCN的关键特性和局限性,例如由样品的统计依赖性引起的,该图由图的边缘引入,这会导致完整梯度的估计值偏置。我们讨论的另一个限制是Minibatch采样对模型性能的负面影响。结果,在参数更新期间,在整个数据集上计算梯度,从而破坏了对大图的可扩展性。为了解决这个问题,我们研究了替代方法,这些方法允许在每次迭代中仅采样一部分数据,可以安全地学习良好的参数。我们重现了KIPF等人的工作中报告的结果。并提出一个灵感签名的实现,这是一种无抽样的minibatch方法。最终,我们比较了基准数据集上的两个实现,证明它们在半监督节点分类任务的预测准确性方面是可比的。
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
给定传感器读数随着时间的推移从电网上,我们如何在发生异常时准确地检测?实现这一目标的关键部分是使用电网传感器网络在电网上实时地在实时检测到自然故障或恶意的任何不寻常的事件。行业中现有的坏数据探测器缺乏鲁布布利地检测广泛类型的异常,特别是由于新兴网络攻击而造成的复杂性,因为它们一次在网格的单个测量快照上运行。新的ML方法更广泛适用,但通常不会考虑拓扑变化对传感器测量的影响,因此无法适应历史数据中的定期拓扑调整。因此,我们向DynWatch,基于域知识和拓扑知识算法用于使用动态网格上的传感器进行异常检测。我们的方法准确,优于实验中的现有方法20%以上(F-Measure);快速,在60K +分支机用中的每次传感器上平均运行小于1.7ms,使用笔记本电脑,并在图表的大小上线性缩放。
translated by 谷歌翻译
图表神经网络(GNNS)最近在人工智能(AI)领域的普及,这是由于它们作为输入数据相对非结构化数据类型的独特能力。尽管GNN架构的一些元素在概念上类似于传统神经网络(以及神经网络变体)的操作中,但是其他元件代表了传统深度学习技术的偏离。本教程通过整理和呈现有关GNN最常见和性能变种的动机,概念,数学和应用的细节,将GNN的权力和新颖性暴露给AI从业者。重要的是,我们简明扼要地向实际示例提出了本教程,从而为GNN的主题提供了实用和可访问的教程。
translated by 谷歌翻译
本文开发了一个深图运算符网络(DeepGraphonet)框架,该框架学会了近似具有基础子图形结构的复杂系统(例如电网或流量)的动力学。我们通过融合(i)图形神经网络(GNN)来利用空间相关的图形信息和(ii)深操作符网络〜(deeponet)近似动态系统的解决方案操作员的能力来构建深图载体。然后,所得的深图载体可以通过观察图形状态信息的有限历史来预测给定的短/中期时间范围内的动力学。此外,我们将深图载体设计为独立于解决方案。也就是说,我们不需要以精确/相同的分辨率收集有限的历史记录。此外,为了传播训练有素的Deepgraphonet的结果,我们设计了一种零摄像的学习策略,可以在不同的子图上使用它。最后,对(i)瞬态稳定性预测电网和(ii)车辆系统的交通流量预测问题的经验结果说明了拟议的Deepgraphonet的有效性。
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译