在数字病理学中,许多图像分析任务是挑战,需要大量的耗时的手动数据注释来应对图像域中的各种可变性来源。基于图像到图像转换的无监督域适应在没有手动开销的情况下通过解决变量,在此字段中获得重要性。在这里,我们通过无监督的污渍到污渍翻译来解决不同组织污渍的变化,以实现深度学习分割模型的无关适用性。我们在肾组织病理学中使用污渍到染色翻译的自行合物,并提出了两种提高平移效果的新方法。首先,我们通过语义指导将先前的分段网络集成到自我监督,以自我监督的应用方向优化的翻译中的优化,第二个,我们将额外的通道纳入翻译输出,以隐含地单独分开的人工元信息,以外地编码用于解决问题。重建。后者对未修饰的Cycreatiman进行了部分优异的性能,但前者在所有污渍中表现最佳,提供了大多数肾脏结构的78%和92%的含量为78%至92%,例如肾小球,小管和静脉。然而,Cyclegans在其他结构的翻译中仅显示了有限的性能,例如,动脉。与原始污渍中的分割相比,我们的研究也发现所有污渍中的所有结构的性能稍低。我们的研究表明,随着目前无监督的技术,似乎不太可能生产通常适用的假污渍。
translated by 谷歌翻译
组织病理学癌症诊断是基于对染色组织载玻片的视觉检查。苏木精和曙红(H \&E)是全球常规使用的标准污渍。它很容易获取和成本效益,但是细胞和组织成分与深蓝色和粉红色的色调相对低,从而使视觉评估,数字图像分析和定量变得困难。这些局限性可以通过IHC的靶蛋白的IHC染色来克服。 IHC提供了细胞和组织成分的选择性高对比度成像,但是它们的使用在很大程度上受到了更为复杂的实验室处理和高成本的限制。我们提出了一个条件周期(CCGAN)网络,以将H \&E染色的图像转换为IHC染色图像,从而促进同一幻灯片上的虚拟IHC染色。这种数据驱动的方法仅需要有限的标记数据,但会生成像素级分割结果。提出的CCGAN模型通过添加类别条件并引入两个结构性损失函数,改善了原始网络\ cite {Zhu_unpaired_2017},从而实现多重辅助翻译并提高了翻译精度。 %需要在这里给出理由。实验表明,所提出的模型在不配对的图像翻译中胜过具有多材料的原始方法。我们还探索了未配对的图像对图像翻译方法的潜力,该方法应用于其他组织学图像与不同染色技术相关的任务。
translated by 谷歌翻译
组织病理学依赖于微观组织图像的分析来诊断疾病。组织制备的关键部分正在染色,从而使染料用于使显着的组织成分更具区分。但是,实验室协议和扫描设备的差异导致相应图像的显着混淆外观变化。这种变异增加了人类错误和评估者间的变异性,并阻碍了自动或半自动方法的性能。在本文中,我们引入了一个无监督的对抗网络,以在多个数据采集域中翻译(因此使)整个幻灯片图像。我们的关键贡献是:(i)一种对抗性体系结构,该架构使用信息流分支通过单个发电机 - 歧视器网络在多个域中学习,该信息流分支优化可感知损失,以及(ii)在培训过程中包含一个附加功能提取网络,以指导指导指导的额外功能提取网络。转换网络以保持组织图像中的所有结构特征完整。我们:(i)首先证明了提出的方法对120例肾癌的H \&e幻灯片的有效性,以及(ii)显示了该方法对更一般问题的好处,例如基于灵活照明的自然图像增强功能和光源适应。
translated by 谷歌翻译
域适应是一种解决未经看线环境中缺乏大量标记数据的技术。提出了无监督的域适应,以使模型适用于使用单独标记的源数据和未标记的目标域数据的新模式。虽然已经提出了许多图像空间域适配方法来捕获像素级域移位,但是这种技术可能无法维持分割任务的高电平语义信息。对于生物医学图像的情况,在域之间的图像转换操作期间,诸如血管的细细节可能会丢失。在这项工作中,我们提出了一种模型,它使用周期 - 一致丢失在域之间适应域,同时通过在适应过程中强制执行基于边缘的损耗来维持原始图像的边缘细节。我们通过将其与其他两只眼底血管分割数据集的其他方法进行比较来证明我们的算法的有效性。与SOTA和〜5.2增量相比,我们达到了1.1〜9.2递增的骰子分数。
translated by 谷歌翻译
While deep learning methods hitherto have achieved considerable success in medical image segmentation, they are still hampered by two limitations: (i) reliance on large-scale well-labeled datasets, which are difficult to curate due to the expert-driven and time-consuming nature of pixel-level annotations in clinical practices, and (ii) failure to generalize from one domain to another, especially when the target domain is a different modality with severe domain shifts. Recent unsupervised domain adaptation~(UDA) techniques leverage abundant labeled source data together with unlabeled target data to reduce the domain gap, but these methods degrade significantly with limited source annotations. In this study, we address this underexplored UDA problem, investigating a challenging but valuable realistic scenario, where the source domain not only exhibits domain shift~w.r.t. the target domain but also suffers from label scarcity. In this regard, we propose a novel and generic framework called ``Label-Efficient Unsupervised Domain Adaptation"~(LE-UDA). In LE-UDA, we construct self-ensembling consistency for knowledge transfer between both domains, as well as a self-ensembling adversarial learning module to achieve better feature alignment for UDA. To assess the effectiveness of our method, we conduct extensive experiments on two different tasks for cross-modality segmentation between MRI and CT images. Experimental results demonstrate that the proposed LE-UDA can efficiently leverage limited source labels to improve cross-domain segmentation performance, outperforming state-of-the-art UDA approaches in the literature. Code is available at: https://github.com/jacobzhaoziyuan/LE-UDA.
translated by 谷歌翻译
已经开发了各种深度学习模型,以从医学图像分段解剖结构,但它们通常在具有不同数据分布的另一个目标域上测试时具有差的性能。最近,已经提出了未经监督的域适应方法来缓解这种所谓的域移位问题,但大多数都是针对具有相对较小域移位的方案设计的,并且在遇到大域间隙时可能会失败。在本文中,我们提出DCDA,一种新的跨模型无监督域适应框架,用于具有大域移位的任务,例如,来自Octa和OCT图像的分段视网膜血管。 DCDA主要包括解开表示样式转移(DRST)模块和协作一致性学习(CCL)模块。 DRST将图像分解成内容组件和样式代码,并执行样式传输和图像重建。 CCL包含两个分段模型,一个用于源域,另一个用于目标域。这两种模型使用标记的数据(与相应的传输图像一起)进行监督学习,并在未标记的数据上执行协作一致性学习。每个模型都侧重于相应的单个域,并旨在产生专用域特定的分段模型。通过对视网膜船分割的广泛实验,我们的框架从Octa到Oct和Oct到Octa的OctA到Octa的骰子分数均达到目标培训的甲骨文,显着优于其他最先进的方法。
translated by 谷歌翻译
组织学图像中核和腺体的实例分割是用于癌症诊断,治疗计划和生存分析的计算病理学工作流程中的重要一步。随着现代硬件的出现,大规模质量公共数据集的最新可用性以及社区组织的宏伟挑战已经看到了自动化方法的激增,重点是特定领域的挑战,这对于技术进步和临床翻译至关重要。在这项调查中,深入分析了过去五年(2017-2022)中发表的原子核和腺体实例细分的126篇论文,进行了深入分析,讨论了当前方法的局限性和公开挑战。此外,提出了潜在的未来研究方向,并总结了最先进方法的贡献。此外,还提供了有关公开可用数据集的概括摘要以及关于说明每种挑战的最佳性能方法的巨大挑战的详细见解。此外,我们旨在使读者现有研究的现状和指针在未来的发展方向上开发可用于临床实践的方法,从而可以改善诊断,分级,预后和癌症的治疗计划。据我们所知,以前没有工作回顾了朝向这一方向的组织学图像中的实例细分。
translated by 谷歌翻译
The success of deep learning is largely due to the availability of large amounts of training data that cover a wide range of examples of a particular concept or meaning. In the field of medicine, having a diverse set of training data on a particular disease can lead to the development of a model that is able to accurately predict the disease. However, despite the potential benefits, there have not been significant advances in image-based diagnosis due to a lack of high-quality annotated data. This article highlights the importance of using a data-centric approach to improve the quality of data representations, particularly in cases where the available data is limited. To address this "small-data" issue, we discuss four methods for generating and aggregating training data: data augmentation, transfer learning, federated learning, and GANs (generative adversarial networks). We also propose the use of knowledge-guided GANs to incorporate domain knowledge in the training data generation process. With the recent progress in large pre-trained language models, we believe it is possible to acquire high-quality knowledge that can be used to improve the effectiveness of knowledge-guided generative methods.
translated by 谷歌翻译
在偏置数据集上培训的分类模型通常在分发外部的外部样本上表现不佳,因为偏置的表示嵌入到模型中。最近,已经提出了各种脱叠方法来解除偏见的表示,但仅丢弃偏见的特征是具有挑战性的,而不会改变其他相关信息。在本文中,我们提出了一种新的扩展方法,该方法使用不同标记图像的纹理表示明确地生成附加图像来放大训练数据集,并在训练分类器时减轻偏差效果。每个新的生成图像包含来自源图像的类似内容信息,同时从具有不同标签的目标图像传送纹理。我们的模型包括纹理共发生损耗,该损耗确定生成的图像的纹理是否与目标的纹理类似,以及确定所生成和源图像之间的内容细节是否保留的内容细节的空间自相似性丢失。生成和原始训练图像都进一步用于训练能够改善抗偏置表示的鲁棒性的分类器。我们使用具有已知偏差的五个不同的人工设计数据集来展示我们的方法缓解偏差信息的能力。对于所有情况,我们的方法表现优于现有的现有最先进的方法。代码可用:https://github.com/myeongkyunkang/i2i4debias
translated by 谷歌翻译
生成的对抗网络(GAN)是在众多领域成功使用的一种强大的深度学习模型。它们属于一个称为生成方法的更广泛的家族,该家族通过从真实示例中学习样本分布来生成新数据。在临床背景下,与传统的生成方法相比,GAN在捕获空间复杂,非线性和潜在微妙的疾病作用方面表现出增强的能力。这篇综述评估了有关gan在各种神经系统疾病的成像研究中的应用的现有文献,包括阿尔茨海默氏病,脑肿瘤,脑老化和多发性硬化症。我们为每个应用程序提供了各种GAN方法的直观解释,并进一步讨论了在神经影像学中利用gans的主要挑战,开放问题以及有希望的未来方向。我们旨在通过强调如何利用gan来支持临床决策,并有助于更好地理解脑部疾病的结构和功能模式,从而弥合先进的深度学习方法和神经病学研究之间的差距。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
这项工作提出了一个新颖的框架CISFA(对比图像合成和自我监督的特征适应),该框架建立在图像域翻译和无监督的特征适应性上,以进行跨模式生物医学图像分割。与现有作品不同,我们使用单方面的生成模型,并在输入图像的采样贴片和相应的合成图像之间添加加权贴片对比度损失,该图像用作形状约束。此外,我们注意到生成的图像和输入图像共享相似的结构信息,但具有不同的方式。因此,我们在生成的图像和输入图像上强制实施对比损失,以训练分割模型的编码器,以最大程度地减少学到的嵌入空间中成对图像之间的差异。与依靠对抗性学习进行特征适应的现有作品相比,这种方法使编码器能够以更明确的方式学习独立于域的功能。我们对包含腹腔和全心的CT和MRI图像的分割任务进行了广泛评估。实验结果表明,所提出的框架不仅输出了较小的器官形状变形的合成图像,而且还超过了最先进的域适应方法的较大边缘。
translated by 谷歌翻译
使用合成数据来训练在现实世界数据上实现良好性能的神经网络是一项重要任务,因为它可以减少对昂贵数据注释的需求。然而,合成和现实世界数据具有域间隙。近年来,已经广泛研究了这种差距,也称为域的适应性。通过直接执行两者之间的适应性来缩小源(合成)和目标数据之间的域间隙是具有挑战性的。在这项工作中,我们提出了一个新颖的两阶段框架,用于改进图像数据上的域适应技术。在第一阶段,我们逐步训练一个多尺度神经网络,以从源域到目标域进行图像翻译。我们将新的转换数据表示为“目标中的源”(SIT)。然后,我们将生成的SIT数据插入任何标准UDA方法的输入。该新数据从所需的目标域缩小了域间隙,这有助于应用UDA进一步缩小差距的方法。我们通过与其他领先的UDA和图像对图像翻译技术进行比较来强调方法的有效性,当时用作SIT发电机。此外,我们通过三种用于语义分割的最先进的UDA方法(HRDA,daformer and proda)在两个UDA任务上,GTA5到CityScapes和Synthia to CityScapes来证明我们的框架的改进。
translated by 谷歌翻译
对图像到图像翻译的监督(I2I)任务很难通过,但对所产生的质量产生重大影响。在本文中,我们观察到,对于许多无人监督的I2I(UI2I)方案,一个域更熟悉另一个域,并且提供域的域名先前知识,例如语义分割。我们争辩说,对于复杂的场景,弄清楚域的语义结构很难,特别是没有监督,而是一个成功的I2i操作的重要组成部分。因此,我们介绍了两种技术,以便在翻译质量的好处结合这种无价值的域的现有知识:通过一种新的多流生成器架构,并通过基于语义分段的正则化损耗术语。从本质上讲,我们根据语义掩模提出分离输入数据,明确地将网络引导到图像的不同区域的不同行为。此外,我们提出培训语义分段网络以及翻译任务,并将其作为提高稳健性的损耗术语利用。我们验证了我们对城市数据的方法,展示了将Day Images转换为夜间图像的挑战UI2i任务的卓越品质。此外,我们还展示了如何使用我们的增强图像加强目标数据集,从而提高了诸如经典检测之类的下游任务的培训。
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
现在,人工智能(AI)可以自动解释医学图像以供临床使用。但是,AI在介入图像中的潜在用途(相对于参与分类或诊断的图像),例如在手术期间的指导,在很大程度上尚未开发。这是因为目前,使用现场分析对现场手术收集的数据进行了事后分析,这是因为手术AI系统具有基本和实际限制,包括道德考虑,费用,可扩展性,数据完整性以及缺乏地面真相。在这里,我们证明从人类模型中创建逼真的模拟图像是可行的替代方法,并与大规模的原位数据收集进行了补充。我们表明,对现实合成数据的训练AI图像分析模型,结合当代域的概括或适应技术,导致在实际数据上的模型与在精确匹配的真实数据训练集中训练的模型相当地执行的模型。由于从基于人类的模型尺度的合成生成培训数据,因此我们发现我们称为X射线图像分析的模型传输范式(我们称为Syntheex)甚至可以超越实际数据训练的模型,因为训练的有效性较大的数据集。我们证明了合成在三个临床任务上的潜力:髋关节图像分析,手术机器人工具检测和COVID-19肺病变分割。 Synthex提供了一个机会,可以极大地加速基于X射线药物的智能系统的概念,设计和评估。此外,模拟图像环境还提供了测试新颖仪器,设计互补手术方法的机会,并设想了改善结果,节省时间或减轻人为错误的新技术,从实时人类数据收集的道德和实际考虑方面摆脱了人为错误。
translated by 谷歌翻译
机器学习和计算机视觉技术近年来由于其自动化,适合性和产生惊人结果的能力而迅速发展。因此,在本文中,我们调查了2014年至2022年之间发表的关键研究,展示了不同的机器学习算法研究人员用来分割肝脏,肝肿瘤和肝脉管结构的研究。我们根据感兴趣的组织(肝果,肝肿瘤或肝毒剂)对被调查的研究进行了划分,强调了同时解决多个任务的研究。此外,机器学习算法被归类为受监督或无监督的,如果属于某个方案的工作量很大,则将进一步分区。此外,对文献和包含上述组织面具的网站发现的不同数据集和挑战进行了彻底讨论,强调了组织者的原始贡献和其他研究人员的贡献。同样,在我们的评论中提到了文献中过度使用的指标,这强调了它们与手头的任务的相关性。最后,强调创新研究人员应对需要解决的差距的关键挑战和未来的方向,例如许多关于船舶分割挑战的研究的稀缺性以及为什么需要早日处理他们的缺席。
translated by 谷歌翻译
冷冻切片(FS)是手术操作期间组织微观评估的制备方法。该程序的高速允许病理学医师快速评估关键的微观特征,例如肿瘤边距和恶性地位,以引导手术决策,并尽量减少对操作过程的干扰。然而,FS容易引入许多误导性的人工结构(组织学人工制品),例如核冰晶,压缩和切割人工制品,妨碍了病理学家的及时和准确的诊断判断。额外的培训和长期经验通常需要对冻结部分进行高度有效和时间关键的诊断。另一方面,福尔马林固定和石蜡嵌入(FFPE)的黄金标准组织制备技术提供了显着优越的图像质量,而是一种非常耗时的过程(12-48小时),使其不适合术语用。在本文中,我们提出了一种人工智能(AI)方法,通过在几分钟内将冻结的整个幻灯片(FS-WSIS)计算冻结的整个幻灯片(FS-WSIS)来改善FS图像质量。 AI-FFPE将FS人工制品终止了注意力机制的指导,该引导机制在利用FS输入图像和合成的FFPE样式图像之间利用建立的自正则化机制,以及综合相关特征的合成的FFPE样式图像。结果,AI-FFPE方法成功地生成了FFPE样式图像,而不会显着扩展组织处理时间,从而提高诊断准确性。我们证明了使用各种不同的定性和定量度量,包括来自20个董事会认证的病理学家的视觉图灵测试的各种不同的定性和定量度量。
translated by 谷歌翻译
由于细分标签稀缺,已经进行了广泛的研究,以培训具有域名适应性,半监督或自制学习技术来利用丰富的未标记数据集的分割网络。但是,这些方法彼此不同,因此尚不清楚如何将这些方法组合起来以提高性能。受到最新的多域图像翻译方法的启发,我们在这里提出了一个新颖的分割框架,使用自适应实例归一化(ADAIN),以便对单个发电机进行培训,以通过简单地通过更改任务来通过知识蒸馏来执行域的适应性和半手不足的细分任务 - 特定的AD代码。具体而言,我们的框架旨在处理胸部X射线射线照片(CXR)细分中的困难情况,其中标签仅适用于正常数据,但训练有素的模型应应用于正常数据和异常数据。提出的网络在域移动下显示出极大的概括性,并实现了异常CXR分割的最新性能。
translated by 谷歌翻译