尽管卷积神经网络(CNN)在图像识别方面具有很高的精度,但它们容易受到对抗性示例和分布数据的影响,并且已经指出了人类识别的差异。为了提高针对分布数据的鲁棒性,我们提出了一种基于频率的数据增强技术,该技术将频率组件用同一类的其他图像替换。当培训数据为CIFAR10并且分发数据的数据为SVHN时,使用该方法训练的模型的接收器操作特征(AUROC)曲线从89.22 \%\%增加到98.15 \%,并进一步增加到98.59\%与另一种数据增强方法结合使用。此外,我们在实验上证明了分布外数据的可靠模型使用图像的许多高频组件。
translated by 谷歌翻译
经过认证的稳健性保证衡量模型对测试时间攻击的稳健性,并且可以评估模型对现实世界中部署的准备情况。在这项工作中,我们批判性地研究了对基于随机平滑的认证方法的对抗鲁棒性如何在遇到配送外(OOD)数据的最先进的鲁棒模型时改变。我们的分析显示了这些模型的先前未知的漏洞,以低频OOD数据,例如与天气相关的损坏,使这些模型不适合在野外部署。为了缓解这个问题,我们提出了一种新的数据增强方案,Fourimix,产生增强以改善训练数据的光谱覆盖范围。此外,我们提出了一种新规范器,鼓励增强数据的噪声扰动的一致预测,以提高平滑模型的质量。我们发现Fouriermix增强有助于消除可认真强大的模型的频谱偏差,使其能够在一系列ood基准上实现明显更好的稳健性保证。我们的评估还在突出模型的光谱偏差时揭示了当前的OOD基准。为此,我们提出了一个全面的基准套件,其中包含来自光谱域中不同区域的损坏。对拟议套件上流行的增强方法培训的模型的评估突出了它们的光谱偏差,并建立了富硫克斯训练型模型在实现整个频谱上变化下的更好认证的鲁棒性担保的优势。
translated by 谷歌翻译
适应分布数据的数据是所有统计学习算法的元挑战,这些算法强烈依赖于I.I.D.假设。它导致不可避免的人工成本和在现实应用中的信心危机。为此,域的概括旨在从多个源域中的挖掘域 - 核定知识,这些知识可以推广到看不见的目标域。在本文中,通过利用图像的频域,我们独特地使用两个关键观察:(i)图像的高频信息描绘了对象边缘结构,该信息保留对象的高级语义信息自然是一致的跨不同域,(ii)低频组件保留对象平滑结构,而此信息易于域移动。在上述观察结果的激励下,我们引入(i)图像的高频和低频功能,(ii)一种信息交互机制,以确保两个部分的有用知识可以有效地合作,并且(iii)一种新型的数据增强技术,可在频域上起作用,以鼓励频率特征的稳健性。提出的方法在三个广泛使用的域概括基准(Digit-DG,Office-home和pac)上获得了最先进的性能。
translated by 谷歌翻译
提高深神经网络(DNN)对分布(OOD)数据的准确性对于在现实世界应用中接受深度学习(DL)至关重要。已经观察到,分布(ID)与OOD数据的准确性遵循线性趋势和模型表现优于该基线非常罕见(并被称为“有效鲁棒”)。最近,已经开发出一些有前途的方法来提高OOD的鲁棒性:模型修剪,数据增强和结合或零射门评估大型预审预周化模型。但是,仍然对观察有效鲁棒性所需的OOD数据和模型属性的条件尚无清晰的了解。我们通过对多种方法进行全面的经验研究来解决这个问题,这些方法已知会影响OOD鲁棒性,对CIFAR-10和Imagenet的广泛自然和合成分布转移。特别是,我们通过傅立叶镜头观察“有效的鲁棒性难题”,并询问模型和OOD数据的光谱特性如何影响相应的有效鲁棒性。我们发现这个傅立叶镜头提供了一些深入的了解,为什么某些强大的模型,尤其是夹家族的模型,可以实现稳健性。但是,我们的分析还清楚地表明,没有已知的指标始终是对OOD鲁棒性的最佳解释(甚至是强烈的解释)。因此,为了帮助未来对OOD难题的研究,我们通过引入一组预处理的模型(固定的模型),以有效的稳健性(可公开可鲁棒)解决了差距,这些模型(固有的模型)以及不同级别的OOD稳健性。
translated by 谷歌翻译
Distribution shifts, which often occur in the real world, degrade the accuracy of deep learning systems, and thus improving robustness is essential for practical applications. To improve robustness, we study an image enhancement method that generates recognition-friendly images without retraining the recognition model. We propose a novel image enhancement method, AugNet, which is based on differentiable data augmentation techniques and generates a blended image from many augmented images to improve the recognition accuracy under distribution shifts. In addition to standard data augmentations, AugNet can also incorporate deep neural network-based image transformation, which further improves the robustness. Because AugNet is composed of differentiable functions, AugNet can be directly trained with the classification loss of the recognition model. AugNet is evaluated on widely used image recognition datasets using various classification models, including Vision Transformer and MLP-Mixer. AugNet improves the robustness with almost no reduction in classification accuracy for clean images, which is a better result than the existing methods. Furthermore, we show that interpretation of distribution shifts using AugNet and retraining based on that interpretation can greatly improve robustness.
translated by 谷歌翻译
Modern deep neural networks can achieve high accuracy when the training distribution and test distribution are identically distributed, but this assumption is frequently violated in practice. When the train and test distributions are mismatched, accuracy can plummet. Currently there are few techniques that improve robustness to unforeseen data shifts encountered during deployment. In this work, we propose a technique to improve the robustness and uncertainty estimates of image classifiers. We propose AUGMIX, a data processing technique that is simple to implement, adds limited computational overhead, and helps models withstand unforeseen corruptions. AUGMIX significantly improves robustness and uncertainty measures on challenging image classification benchmarks, closing the gap between previous methods and the best possible performance in some cases by more than half.
translated by 谷歌翻译
数据增强是一种提高深神经网络(DNN)的鲁棒性的简单而有效的方法。多样性和硬度是数据增强的两个互补维度,以实现稳健性。例如,Augmix探讨了各种增强套的随机组成,以增强更广泛的覆盖,而对抗性培训产生过态度硬质样品以发现弱点。通过此激励,我们提出了一个数据增强框架,被称为奥古曼克,统一多样性和硬度的两个方面。 Augmax首先将多个增强运算符进行随机样本,然后学习所选操作员的对抗性混合物。作为更强大的数据增强形式,奥格梅纳队导致了一个明显的增强输入分布,使模型培训更具挑战性。为了解决这个问题,我们进一步设计了一个解散的归一化模块,称为Dubin(双批次和实例规范化),其解除了奥古曼克斯出现的实例 - 明智的特征异质性。实验表明,Augmax-Dubin将显着改善分配的鲁棒性,优于现有技术,在CiFar10-C,CiFar100-C,微小Imagenet-C和Imagenet-C上以3.03%,3.49%,1.82%和0.71%。可提供代码和预磨料模型:https://github.com/vita-group/augmax。
translated by 谷歌翻译
我们提出蒙版频率建模(MFM),这是一种基于统一的基于频域的方法,用于自我监督的视觉模型预训练。在本文中,我们将视角转移到了频域中,而不是将蒙版令牌随机插入到空间域中的输入嵌入。具体而言,MFM首先掩盖了输入图像的一部分频率分量,然后预测频谱上的缺失频率。我们的关键见解是,由于沉重的空间冗余,预测频域中的屏蔽组件更理想地揭示了基础图像模式,而不是预测空间域中的掩盖斑块。我们的发现表明,通过对蒙版和预测策略的正确配置,高频组件中的结构信息和低频对应物中的低级统计信息都有用。 MFM首次证明,对于VIT和CNN,即使没有使用以下内容,简单的非叙事框架也可以学习有意义的表示形式:(i)额外的数据,(ii)额外的模型,(iii)蒙版令牌。与最近的蒙版图像建模方法相比,对成像网和几个鲁棒性基准的实验结果表明,MFM的竞争性能和高级鲁棒性。此外,我们还全面研究了从统一的频率角度来表示经典图像恢复任务对表示学习的有效性,并揭示了他们与MFM方法的有趣关系。项目页面:https://www.mmlab-ntu.com/project/mfm/index.html。
translated by 谷歌翻译
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario,namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when neural networks fail to generalize? We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity". Based on our analysis, we propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies. Models trained with these hard-to-learn samples can effectively suppress the sensitivity in the frequency space, which leads to improved generalization performance. Extensive experiments on multiple public datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods.
translated by 谷歌翻译
CNN表现出与人类不同的许多行为,其中之一是采用高频组件的能力。本文讨论了图像分类任务中的频率偏差现象:高频组件实际上比低频和中频组件的利用要少得多。我们首先通过提出有关特征歧视和学习优先级的两个观察结果来研究频率偏差现象。此外,我们假设(i)光谱密度,(ii)类一致性直接影响频率偏差。具体而言,我们的研究验证数据集的光谱密度主要影响学习优先级,而课程一致性主要影响特征歧视。
translated by 谷歌翻译
随着视觉变压器(VIT)在各种计算机视觉任务中取得了重大进展,最近的文献提出了各种香草VIT的变体,以提高效率和功效。但是,目前尚不清楚其独特的建筑如何影响鲁棒性对共同的腐败。在本文中,我们首次尝试探究VIT变体之间的稳健性差距,并探索对鲁棒性必不可少的基础设计。通过广泛而严格的基准测试,我们证明了简单的体系结构设计,例如重叠的补丁嵌入和卷积进料前馈网络(FFN)可以促进VIT的稳健性。此外,由于培训对培训的影响很大程度上取决于数据的增强,因此以鲁棒性目的的先前基于CNN的增强策略是否仍然值得研究。我们探索了VIT上的不同数据增强,并验证了对抗性噪声训练是否强大,而傅立叶域增强则不如。基于这些发现,我们引入了一种新颖的条件方法,该方法生成以输入图像为条件的动态增强参数,从而为常见的腐败提供了最新的鲁棒性。
translated by 谷歌翻译
已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
变压器模型在处理各种视觉任务方面表现出了有希望的有效性。但是,与训练卷积神经网络(CNN)模型相比,训练视觉变压器(VIT)模型更加困难,并且依赖于大规模训练集。为了解释这一观察结果,我们做出了一个假设,即\ textit {vit模型在捕获图像的高频组件方面的有效性较小,而不是CNN模型},并通过频率分析对其进行验证。受这一发现的启发,我们首先研究了现有技术从新的频率角度改进VIT模型的影响,并发现某些技术(例如,randaugment)的成功可以归因于高频组件的更好使用。然后,为了补偿这种不足的VIT模型能力,我们提出了HAT,该HAT可以通过对抗训练直接增强图像的高频组成部分。我们表明,HAT可以始终如一地提高各种VIT模型的性能(例如VIT-B的 +1.2%,Swin-B的 +0.5%),尤其是提高了仅使用Imagenet-的高级模型Volo-D5至87.3% 1K数据,并且优势也可以维持在分发数据的数据上,并转移到下游任务。该代码可在以下网址获得:https://github.com/jiawangbai/hat。
translated by 谷歌翻译
尽管他们能够代表高度表现力的功能,但深度学习模型似乎找到了简单的解决方案,这些解决方案令人惊讶地概括了。光谱偏见 - 神经网络优先学习低频功能的趋势 - 是对此现象的一种可能解释,但是到目前为止,在理论模型和简化实验中,主要观察到了光谱偏差。在这项工作中,我们提出了用于测量CIFAR-10和Imagenet上现代图像分类网络中光谱偏差的方法。我们发现这些网络确实表现出光谱偏差,并且提高CIFAR-10测试准确性的干预措施往往会产生学到的功能,这些功能总体上具有较高的频率,但在每个类别的示例附近频率较低。这种趋势在培训时间,模型架构,培训示例的数量,数据增强和自我介绍的变化之间存在。我们还探索了功能频率和图像频率之间的连接,并发现光谱偏置对自然图像中普遍存在的低频敏感。在Imagenet上,我们发现学习的功能频率也随内部类别的多样性而变化,并且在更多样化的类别上具有较高的频率。我们的工作使测量并最终影响用于图像分类的神经网络的光谱行为,并且是理解为什么深层模型良好概述的一步。
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)一直是广泛的计算机视觉任务中的主导神经架构。从图像和信号处理的角度来看,这一成功可能会令人惊讶,因为大多数CNN的固有空间金字塔设计显然违反了基本的信号处理法,即在其下采样操作中对定理进行采样。但是,由于不良的采样似乎不影响模型的准确性,因此在模型鲁棒性开始受到更多关注之前,该问题已被广泛忽略。最近的工作[17]在对抗性攻击和分布变化的背景下,毕竟表明,CNN的脆弱性与不良下降采样操作引起的混叠伪像之间存在很强的相关性。本文以这些发现为基础,并引入了一个可混合的免费下采样操作,可以轻松地插入任何CNN体系结构:频lowcut池。我们的实验表明,结合简单而快速的FGSM对抗训练,我们的超参数无操作员显着提高了模型的鲁棒性,并避免了灾难性的过度拟合。
translated by 谷歌翻译
深度神经网络具有强大的功能,但它们也有缺点,例如它们对对抗性例子,噪音,模糊,遮挡等的敏感性。先前提出了许多以前的工作来提高特定的鲁棒性。但是,我们发现,在神经网络模型的额外鲁棒性或概括能力的牺牲下,通常会提高特定的鲁棒性。特别是,在改善对抗性鲁棒性时,对抗性训练方法在不受干扰的数据上严重损害了对不受干扰数据的概括性能。在本文中,我们提出了一种称为AugRmixat的新数据处理和培训方法,该方法可以同时提高神经网络模型的概括能力和多重鲁棒性。最后,我们验证了AUGRMIXAT对CIFAR-10/100和Tiny-Imagenet数据集的有效性。实验表明,Augrmixat可以改善模型的概括性能,同时增强白色框的鲁棒性,黑盒鲁棒性,常见的损坏鲁棒性和部分遮挡鲁棒性。
translated by 谷歌翻译
在真实世界的机器学习应用中,可靠和安全的系统必须考虑超出标准测试设置精度的性能测量。这些其他目标包括分销(OOD)鲁棒性,预测一致性,对敌人的抵御能力,校准的不确定性估计,以及检测异常投入的能力。然而,提高这些目标的绩效通常是一种平衡行为,即今天的方法无法在不牺牲其他安全轴上的性能的情况下实现。例如,对抗性培训改善了对抗性鲁棒性,但急剧降低了其他分类器性能度量。同样,强大的数据增强和正则化技术往往提高鲁棒性,但损害异常检测,提出了对所有现有安全措施的帕累托改进是可能的。为满足这一挑战,我们设计了利用诸如分数形的图片的自然结构复杂性设计新的数据增强策略,这优于众多基线,靠近帕累托 - 最佳,并圆形提高安全措施。
translated by 谷歌翻译
Synthetic data offers the promise of cheap and bountiful training data for settings where lots of labeled real-world data for tasks is unavailable. However, models trained on synthetic data significantly underperform on real-world data. In this paper, we propose Proportional Amplitude Spectrum Training Augmentation (PASTA), a simple and effective augmentation strategy to improve out-of-the-box synthetic-to-real (syn-to-real) generalization performance. PASTA involves perturbing the amplitude spectrums of the synthetic images in the Fourier domain to generate augmented views. We design PASTA to perturb the amplitude spectrums in a structured manner such that high-frequency components are perturbed relatively more than the low-frequency ones. For the tasks of semantic segmentation (GTAV to Real), object detection (Sim10K to Real), and object recognition (VisDA-C Syn to Real), across a total of 5 syn-to-real shifts, we find that PASTA outperforms more complex state-of-the-art generalization methods while being complementary to the same.
translated by 谷歌翻译
几个数据增强方法部署了未标记的分配(UID)数据,以弥合神经网络的培训和推理之间的差距。然而,这些方法在UID数据的可用性方面具有明确的限制和伪标签上的算法的依赖性。在此,我们提出了一种数据增强方法,通过使用缺乏上述问题的分发(OOD)数据来改善对抗和标准学习的泛化。我们展示了如何在理论上使用每个学习场景中的数据来改进泛化,并通过Cifar-10,CiFar-100和ImageNet的子集进行化学理论分析。结果表明,即使在似乎与人类角度几乎没有相关的图像数据中也是不希望的特征。我们还通过与其他数据增强方法进行比较,介绍了所提出的方法的优点,这些方法可以在没有UID数据的情况下使用。此外,我们证明该方法可以进一步改善现有的最先进的对抗培训。
translated by 谷歌翻译
由多种自我关注层组成的变压器,对适用于不同数据方式的通用学习原语,包括计算机视觉最新(SOTA)标准准确性的近期突破。什么仍然很大程度上未开发,是他们的稳健性评估和归因。在这项工作中,我们研究了视觉变压器(VIT)对共同腐败和扰动,分布换算和自然对抗例的鲁棒性。我们使用六种不同的多样化想象数据集关于强大的分类,进行vit模型和Sota卷积神经网络(CNNS)的全面性能比较,大转移。通过一系列系统地设计的实验,我们提供了分析,这些分析提供了定量和定性迹象,以解释为什么VITS确实更强大的学习者。例如,对于更少的参数和类似的数据集和预训练组合,VIT在ImageNet-A上给出了28.10%的前1个精度,这是比一位的可比较变体高4.3x。我们对图像掩蔽,傅里叶谱灵敏度和传播的分析,在离散余弦能量谱上揭示了Vit归属于改善鲁棒性的损伤性能。再现我们的实验的代码可在https://git.io/j3vo0上获得。
translated by 谷歌翻译