Synthetic data offers the promise of cheap and bountiful training data for settings where lots of labeled real-world data for tasks is unavailable. However, models trained on synthetic data significantly underperform on real-world data. In this paper, we propose Proportional Amplitude Spectrum Training Augmentation (PASTA), a simple and effective augmentation strategy to improve out-of-the-box synthetic-to-real (syn-to-real) generalization performance. PASTA involves perturbing the amplitude spectrums of the synthetic images in the Fourier domain to generate augmented views. We design PASTA to perturb the amplitude spectrums in a structured manner such that high-frequency components are perturbed relatively more than the low-frequency ones. For the tasks of semantic segmentation (GTAV to Real), object detection (Sim10K to Real), and object recognition (VisDA-C Syn to Real), across a total of 5 syn-to-real shifts, we find that PASTA outperforms more complex state-of-the-art generalization methods while being complementary to the same.
translated by 谷歌翻译
在本文中,我们考虑了语义分割中域概括的问题,该问题旨在仅使用标记的合成(源)数据来学习强大的模型。该模型有望在看不见的真实(目标)域上表现良好。我们的研究发现,图像样式的变化在很大程度上可以影响模型的性能,并且样式特征可以通过图像的频率平均值和标准偏差来很好地表示。受此启发,我们提出了一种新颖的对抗性增强(Advstyle)方法,该方法可以在训练过程中动态生成硬性化的图像,因此可以有效防止该模型过度适应源域。具体而言,AdvStyle将样式功能视为可学习的参数,并通过对抗培训对其进行更新。学习的对抗性风格功能用于构建用于健壮模型训练的对抗图像。 AdvStyle易于实现,并且可以轻松地应用于不同的模型。对两个合成到现实的语义分割基准的实验表明,Advstyle可以显着改善看不见的真实域的模型性能,并表明我们可以实现最新技术的状态。此外,可以将AdvStyle用于域通用图像分类,并在考虑的数据集上产生明显的改进。
translated by 谷歌翻译
Domain shift widely exists in the visual world, while modern deep neural networks commonly suffer from severe performance degradation under domain shift due to the poor generalization ability, which limits the real-world applications. The domain shift mainly lies in the limited source environmental variations and the large distribution gap between source and unseen target data. To this end, we propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle such domain shift in various visual tasks. Specifically, SHADE is constructed based on two consistency constraints, Style Consistency (SC) and Retrospection Consistency (RC). SC enriches the source situations and encourages the model to learn consistent representation across style-diversified samples. RC leverages general visual knowledge to prevent the model from overfitting to source data and thus largely keeps the representation consistent between the source and general visual models. Furthermore, we present a novel style hallucination module (SHM) to generate style-diversified samples that are essential to consistency learning. SHM selects basis styles from the source distribution, enabling the model to dynamically generate diverse and realistic samples during training. Extensive experiments demonstrate that our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection, with different models, i.e., ConvNets and Transformer.
translated by 谷歌翻译
尽管进行了多年的研究,但跨域的概括仍然是深层网络的语义分割的关键弱点。先前的研究取决于静态模型的假设,即训练过程完成后,模型参数在测试时间保持固定。在这项工作中,我们通过一种自适应方法来挑战这一前提,用于语义分割,将推理过程调整为每个输入样本。自我适应在两个级别上运行。首先,它采用了自我监督的损失,该损失将网络中卷积层的参数定制为输入图像。其次,在批准层中,自适应近似于整个测试数据的平均值和方差,这是不可用的。它通过在训练和从单个测试样本得出的参考分布之间进行插值来实现这一目标。为了凭经验分析我们的自适应推理策略,我们制定并遵循严格的评估协议,以解决先前工作的严重局限性。我们的广泛分析得出了一个令人惊讶的结论:使用标准训练程序,自我适应大大优于强大的基准,并在多域基准测试方面设定了新的最先进的准确性。我们的研究表明,自适应推断可以补充培训时间的既定模型正规化实践,以改善深度网络的概括到异域数据。
translated by 谷歌翻译
Domain generalization (DG) aims to train a model to perform well in unseen domains under different distributions. This paper considers a more realistic yet more challenging scenario,namely Single Domain Generalization (Single-DG), where only a single source domain is available for training. To tackle this challenge, we first try to understand when neural networks fail to generalize? We empirically ascertain a property of a model that correlates strongly with its generalization that we coin as "model sensitivity". Based on our analysis, we propose a novel strategy of Spectral Adversarial Data Augmentation (SADA) to generate augmented images targeted at the highly sensitive frequencies. Models trained with these hard-to-learn samples can effectively suppress the sensitivity in the frequency space, which leads to improved generalization performance. Extensive experiments on multiple public datasets demonstrate the superiority of our approach, which surpasses the state-of-the-art single-DG methods.
translated by 谷歌翻译
在本文中,我们解决了一次性分段的单次无监督域适应(OSUDA)的问题,其中分段器在训练期间只看到一个未标记的目标图像。在这种情况下,传统的无监督域适应模型通常失败,因为它们不能适应目标域,以具有过度拟合到一个(或几个)目标样本。为了解决这个问题,现有的OSUDA方法通常集成了一种样式传输模块,基于未标记的目标样本执行域随机化,可以在训练期间探讨目标样本周围的多个域。然而,这种样式传输模块依赖于一组额外的图像作为预训练的样式参考,并且还增加了对域适应的内存需求。在这里,我们提出了一种新的奥德达方法,可以有效地缓解这种计算负担。具体而言,我们将多个样式混合层集成到分段器中,该分段器播放样式传输模块的作用,以在不引入任何学习参数的情况下使源图像进行体现。此外,我们提出了一种剪辑的原型匹配(PPM)方法来加权考虑源像素在监督训练期间的重要性,以缓解负适应。实验结果表明,我们的方法在单次设置下的两个常用基准上实现了新的最先进的性能,并且比所有比较方法更有效。
translated by 谷歌翻译
Recent self-supervised video representation learning methods focus on maximizing the similarity between multiple augmented views from the same video and largely rely on the quality of generated views. However, most existing methods lack a mechanism to prevent representation learning from bias towards static information in the video. In this paper, we propose frequency augmentation (FreqAug), a spatio-temporal data augmentation method in the frequency domain for video representation learning. FreqAug stochastically removes specific frequency components from the video so that learned representation captures essential features more from the remaining information for various downstream tasks. Specifically, FreqAug pushes the model to focus more on dynamic features rather than static features in the video via dropping spatial or temporal low-frequency components. To verify the generality of the proposed method, we experiment with FreqAug on multiple self-supervised learning frameworks along with standard augmentations. Transferring the improved representation to five video action recognition and two temporal action localization downstream tasks shows consistent improvements over baselines.
translated by 谷歌翻译
在本文中,我们在不依赖于任何源域表示的情况下向“无监督域适应(UDA)的任务”的任务提供了一个解决方案。以前的UDA用于语义细分的方法使用在源域和目标域中的模型的同时训练,或者它们依赖于附加网络,在适应期间将源域知识重放到模型。相比之下,我们介绍了我们的小说无监督的批量适应(UBNA)方法,它将给定的预先训练模型适应未经使用的策略域而不使用 - 超出现有模型参数 - 任何源域表示(既不是数据或者,也可以在在线设置或仅以几滴方式使用从目标域中的几个未标记的图像中应用的。具体地,我们使用指数衰减的动量因子部分地将归一化层统计数据调整到目标域,从而将统计数据与两个域混合。通过评估语义分割的标准UDA基准测试,我们认为这优于一个没有适应的模型以及仅使用目标域中的统计数据的基线方法。与标准UDA方法相比,我们在源域表示的性能和使用之间报告权衡。
translated by 谷歌翻译
我们建议利用模拟的潜力,以域的概括方式对现实世界自动驾驶场景的语义分割。对分割网络进行了训练,没有任何目标域数据,并在看不见的目标域进行了测试。为此,我们提出了一种新的域随机化和金字塔一致性的方法,以学习具有高推广性的模型。首先,我们建议使用辅助数据集以视觉外观的方式随机将合成图像随机化,以有效地学习域不变表示。其次,我们进一步在不同的“风格化”图像和图像中实施了金字塔一致性,以分别学习域不变和规模不变的特征。关于从GTA和合成对城市景观,BDD和Mapillary的概括进行了广泛的实验;而我们的方法比最新技术取得了卓越的成果。值得注意的是,我们的概括结果与最先进的模拟域适应方法相比甚至更好,甚至比在训练时访问目标域数据的结果。
translated by 谷歌翻译
域自适应语义分割的大多数现代方法依赖于适应期间继续访问源数据,这可能是由于计算或隐私约束而不可行的。我们专注于对语义分割的无源域适应,其中源模型必须仅为仅给出未标记的目标数据给出的新目标域。我们提出了增强一致性引导的自我培训(ATHCO),一种无源适应算法,它使用模型的像素级预测一致性,各种目标图像的自动生成的视图以及模型置信度来识别可靠的像素预测,并选择性地那些人的自动训练。ATHCO在三个标准基准测试中实现最先进的结果,以便在语义分割中的3个标准基准,所有内部都在实现和快速收敛方法中。
translated by 谷歌翻译
We describe a simple method for unsupervised domain adaptation, whereby the discrepancy between the source and target distributions is reduced by swapping the lowfrequency spectrum of one with the other. We illustrate the method in semantic segmentation, where densely annotated images are aplenty in one domain (e.g., synthetic data), but difficult to obtain in another (e.g., real images). Current state-of-the-art methods are complex, some requiring adversarial optimization to render the backbone of a neural network invariant to the discrete domain selection variable. Our method does not require any training to perform the domain alignment, just a simple Fourier Transform and its inverse. Despite its simplicity, it achieves state-of-the-art performance in the current benchmarks, when integrated into a relatively standard semantic segmentation model. Our results indicate that even simple procedures can discount nuisance variability in the data that more sophisticated methods struggle to learn away. 1
translated by 谷歌翻译
Domain adaptation aims to bridge the domain shifts between the source and the target domain. These shifts may span different dimensions such as fog, rainfall, etc. However, recent methods typically do not consider explicit prior knowledge about the domain shifts on a specific dimension, thus leading to less desired adaptation performance. In this paper, we study a practical setting called Specific Domain Adaptation (SDA) that aligns the source and target domains in a demanded-specific dimension. Within this setting, we observe the intra-domain gap induced by different domainness (i.e., numerical magnitudes of domain shifts in this dimension) is crucial when adapting to a specific domain. To address the problem, we propose a novel Self-Adversarial Disentangling (SAD) framework. In particular, given a specific dimension, we first enrich the source domain by introducing a domainness creator with providing additional supervisory signals. Guided by the created domainness, we design a self-adversarial regularizer and two loss functions to jointly disentangle the latent representations into domainness-specific and domainness-invariant features, thus mitigating the intra-domain gap. Our method can be easily taken as a plug-and-play framework and does not introduce any extra costs in the inference time. We achieve consistent improvements over state-of-the-art methods in both object detection and semantic segmentation.
translated by 谷歌翻译
由于获取对语义分割的实际图像的像素明智的注释是一个昂贵的过程,模型可以通过更多可访问的合成数据训练,并且适应真实图像而不需要其注释。在无监督的域适应(UDA)中研究了该过程。尽管大量方法提出了新的适应策略,但它们主要基于过时的网络架构。由于尚未系统地研究了网络架构的影响,我们首先为UDA进行基准标记不同的网络架构,然后提出基于基准结果的新型UDA方法Daformer。 DAFormer网络由变压器编码器和多级上下文感知功能融合解码器组成。它通过三种简单但重要的培训策略使稳定培训并避免将DAFFormer过度装箱到源域:虽然通过减轻自我训练的确认偏差来提高源域上的罕见类别提高了伪标签的质量常见的类,Thing-Class Imagenet特征距离和学习率预热促进了从想象成预介绍的功能转移。 Daformer显着提高了最先进的性能,通过10.8 Miou for GTA-> Citycapes和5.4 Miou for Synthia-> Citycapes,并使得甚至是学习甚至困难的课程,如火车,公共汽车和卡车。该实现可在https://github.com/lhoyer/daformer中获得。
translated by 谷歌翻译
语义分割在广泛的计算机视觉应用中起着基本作用,提供了全球对图像​​的理解的关键信息。然而,最先进的模型依赖于大量的注释样本,其比在诸如图像分类的任务中获得更昂贵的昂贵的样本。由于未标记的数据替代地获得更便宜,因此无监督的域适应达到了语义分割社区的广泛成功并不令人惊讶。本调查致力于总结这一令人难以置信的快速增长的领域的五年,这包含了语义细分本身的重要性,以及将分段模型适应新环境的关键需求。我们提出了最重要的语义分割方法;我们对语义分割的域适应技术提供了全面的调查;我们揭示了多域学习,域泛化,测试时间适应或无源域适应等较新的趋势;我们通过描述在语义细分研究中最广泛使用的数据集和基准测试来结束本调查。我们希望本调查将在学术界和工业中提供具有全面参考指导的研究人员,并有助于他们培养现场的新研究方向。
translated by 谷歌翻译
Unsupervised domain adaptation (UDA) for semantic segmentation is a promising task freeing people from heavy annotation work. However, domain discrepancies in low-level image statistics and high-level contexts compromise the segmentation performance over the target domain. A key idea to tackle this problem is to perform both image-level and feature-level adaptation jointly. Unfortunately, there is a lack of such unified approaches for UDA tasks in the existing literature. This paper proposes a novel UDA pipeline for semantic segmentation that unifies image-level and feature-level adaptation. Concretely, for image-level domain shifts, we propose a global photometric alignment module and a global texture alignment module that align images in the source and target domains in terms of image-level properties. For feature-level domain shifts, we perform global manifold alignment by projecting pixel features from both domains onto the feature manifold of the source domain; and we further regularize category centers in the source domain through a category-oriented triplet loss and perform target domain consistency regularization over augmented target domain images. Experimental results demonstrate that our pipeline significantly outperforms previous methods. In the commonly tested GTA5$\rightarrow$Cityscapes task, our proposed method using Deeplab V3+ as the backbone surpasses previous SOTA by 8%, achieving 58.2% in mIoU.
translated by 谷歌翻译
传统的域适应性(DA)技术旨在通过学习领域不变表示来改善域的可传递性;同时保留从标记的源数据中收集的任务歧义性知识。但是,同时访问标签源和未标记的目标的要求使其不适合无源的无源DA设置。实现有效原件到通用域映射的微不足道的解决方案可改善可转移性,但会降低任务可区分性。从理论和经验的角度分析障碍后,我们得出了新颖的见解,以表明原始和相应的翻译通用样品之间的混合会增强可区分性可转移性权衡,同时适当尊重以隐私为导向的无源源环境。在现有的无源DA方法之上,简单但有效地实现了所提出的见解,可产生最先进的性能,并更快地收敛。除了单源外,我们还胜过分类和语义分割基准的多源先验艺术。
translated by 谷歌翻译
In unsupervised domain adaptation (UDA), a model trained on source data (e.g. synthetic) is adapted to target data (e.g. real-world) without access to target annotation. Most previous UDA methods struggle with classes that have a similar visual appearance on the target domain as no ground truth is available to learn the slight appearance differences. To address this problem, we propose a Masked Image Consistency (MIC) module to enhance UDA by learning spatial context relations of the target domain as additional clues for robust visual recognition. MIC enforces the consistency between predictions of masked target images, where random patches are withheld, and pseudo-labels that are generated based on the complete image by an exponential moving average teacher. To minimize the consistency loss, the network has to learn to infer the predictions of the masked regions from their context. Due to its simple and universal concept, MIC can be integrated into various UDA methods across different visual recognition tasks such as image classification, semantic segmentation, and object detection. MIC significantly improves the state-of-the-art performance across the different recognition tasks for synthetic-to-real, day-to-nighttime, and clear-to-adverse-weather UDA. For instance, MIC achieves an unprecedented UDA performance of 75.9 mIoU and 92.8% on GTA-to-Cityscapes and VisDA-2017, respectively, which corresponds to an improvement of +2.1 and +3.0 percent points over the previous state of the art. The implementation is available at https://github.com/lhoyer/MIC.
translated by 谷歌翻译
本文对实例分割模型进行了全面评估,这些模型与现实世界图像损坏以及室外图像集合,例如与培训数据集不同的设置捕获的图像。室外图像评估显示了模型的概括能力,现实世界应用的一个基本方面以及广泛研究的域适应性主题。当设计用于现实世界应用程序的实例分割模型并选择现成的预期模型以直接用于手头的任务时,这些提出的鲁棒性和泛化评估很重要。具体而言,这项基准研究包括最先进的网络架构,网络骨架,标准化层,从头开始训练的模型,从头开始与预处理的网络以及多任务培训对稳健性和概括的影响。通过这项研究,我们获得了一些见解。例如,我们发现组归一化增强了跨损坏的网络的鲁棒性,其中图像内容保持不变,但损坏却添加在顶部。另一方面,分批归一化改善了图像特征统计信息在不同数据集上的概括。我们还发现,单阶段探测器比其训练大小不太概括到更大的图像分辨率。另一方面,多阶段探测器可以轻松地用于不同尺寸的图像上。我们希望我们的全面研究能够激发更强大和可靠的实例细分模型的发展。
translated by 谷歌翻译
变压器模型在处理各种视觉任务方面表现出了有希望的有效性。但是,与训练卷积神经网络(CNN)模型相比,训练视觉变压器(VIT)模型更加困难,并且依赖于大规模训练集。为了解释这一观察结果,我们做出了一个假设,即\ textit {vit模型在捕获图像的高频组件方面的有效性较小,而不是CNN模型},并通过频率分析对其进行验证。受这一发现的启发,我们首先研究了现有技术从新的频率角度改进VIT模型的影响,并发现某些技术(例如,randaugment)的成功可以归因于高频组件的更好使用。然后,为了补偿这种不足的VIT模型能力,我们提出了HAT,该HAT可以通过对抗训练直接增强图像的高频组成部分。我们表明,HAT可以始终如一地提高各种VIT模型的性能(例如VIT-B的 +1.2%,Swin-B的 +0.5%),尤其是提高了仅使用Imagenet-的高级模型Volo-D5至87.3% 1K数据,并且优势也可以维持在分发数据的数据上,并转移到下游任务。该代码可在以下网址获得:https://github.com/jiawangbai/hat。
translated by 谷歌翻译
在测试时间适应(TTA)中,给定在某些源数据上培训的模型,目标是使其适应从不同分布的测试实例更好地预测。至关重要的是,TTA假设从目标分布到Finetune源模型,无法访问源数据或甚至从目标分布到任何其他标记/未标记的样本。在这项工作中,我们考虑TTA在更务实的设置中,我们称为SITA(单图像测试时间适应)。这里,在制作每个预测时,该模型只能访问给定的\ emph {单}测试实例,而不是实例的\ emph {批次}。通常在文献中被考虑。这是由逼真的情况激励,其中在按需时尚中需要推断,可能不会被延迟到“批量 - iFY”传入请求或者在没有范围的边缘设备(如移动电话中)发生推断批处理。 SITA的整个适应过程应在推理时间发生时非常快。为了解决这个问题,我们提出了一种新颖的AUGBN,用于仅需要转发传播的SITA设置。该方法可以为分类和分段任务的单个测试实例调整任何特征训练模型。 AUGBN估计仅使用具有标签保存的转换的一个前进通过的给定测试图像的看不见的测试分布的正常化统计。由于AUGBN不涉及任何反向传播,与其他最近的方法相比,它显着更快。据我们所知,这是仅使用单个测试图像解决此硬调整问题的第一个工作。尽管非常简单,但我们的框架能够在我们广泛的实验和消融研究中对目标实例上应用源模型来实现显着的性能增益。
translated by 谷歌翻译