A challenge in spoken language translation is that plenty of spoken content is long-form, but short units are necessary for obtaining high-quality translations. To address this mismatch, we fine-tune a general-purpose, large language model to split long ASR transcripts into segments that can be independently translated so as to maximize the overall translation quality. We compare to several segmentation strategies and find that our approach improves BLEU score on three languages by an average of 2.7 BLEU overall compared to an automatic punctuation baseline. Further, we demonstrate the effectiveness of two constrained decoding strategies to improve well-formedness of the model output from above 99% to 100%.
translated by 谷歌翻译
Data scarcity is one of the main issues with the end-to-end approach for Speech Translation, as compared to the cascaded one. Although most data resources for Speech Translation are originally document-level, they offer a sentence-level view, which can be directly used during training. But this sentence-level view is single and static, potentially limiting the utility of the data. Our proposed data augmentation method SegAugment challenges this idea and aims to increase data availability by providing multiple alternative sentence-level views of a dataset. Our method heavily relies on an Audio Segmentation system to re-segment the speech of each document, after which we obtain the target text with alignment methods. The Audio Segmentation system can be parameterized with different length constraints, thus giving us access to multiple and diverse sentence-level views for each document. Experiments in MuST-C show consistent gains across 8 language pairs, with an average increase of 2.2 BLEU points, and up to 4.7 BLEU for lower-resource scenarios in mTEDx. Additionally, we find that SegAugment is also applicable to purely sentence-level data, as in CoVoST, and that it enables Speech Translation models to completely close the gap between the gold and automatic segmentation at inference time.
translated by 谷歌翻译
While speech recognition Word Error Rate (WER) has reached human parity for English, long-form dictation scenarios still suffer from segmentation and punctuation problems resulting from irregular pausing patterns or slow speakers. Transformer sequence tagging models are effective at capturing long bi-directional context, which is crucial for automatic punctuation. Automatic Speech Recognition (ASR) production systems, however, are constrained by real-time requirements, making it hard to incorporate the right context when making punctuation decisions. In this paper, we propose a streaming approach for punctuation or re-punctuation of ASR output using dynamic decoding windows and measure its impact on punctuation and segmentation accuracy across scenarios. The new system tackles over-segmentation issues, improving segmentation F0.5-score by 13.9%. Streaming punctuation achieves an average BLEU-score improvement of 0.66 for the downstream task of Machine Translation (MT).
translated by 谷歌翻译
确保适当的标点符号和字母外壳是朝向应用复杂的自然语言处理算法的关键预处理步骤。这对于缺少标点符号和壳体的文本源,例如自动语音识别系统的原始输出。此外,简短的短信和微博的平台提供不可靠且经常错误的标点符号和套管。本调查概述了历史和最先进的技术,用于恢复标点符号和纠正单词套管。此外,突出了当前的挑战和研究方向。
translated by 谷歌翻译
语音细分将长言语分为短段,对于语音翻译(ST)至关重要。像WebRTC VAD这样的流行VAD工具通常依赖于基于暂停的细分。不幸的是,语音中的暂停不一定与句子边界匹配,句子可以通过很短的停顿连接,而VAD很难检测到。在这项研究中,我们建议使用使用分割的双语语音语料库训练的二元分类模型进行语音分割方法。我们还提出了一种结合VAD和上述语音分割方法的混合方法。实验结果表明,所提出的方法比常规分割方法更适合级联和端到端ST系统。混合方法进一步改善了翻译性能。
translated by 谷歌翻译
End-to-end Speech Translation (E2E ST) aims to translate source speech into target translation without generating the intermediate transcript. However, existing approaches for E2E ST degrade considerably when only limited ST data are available. We observe that an ST model's performance strongly correlates with its embedding similarity from speech and transcript. In this paper, we propose Word-Aligned COntrastive learning (WACO), a novel method for few-shot speech-to-text translation. Our key idea is bridging word-level representations for both modalities via contrastive learning. We evaluate WACO and other methods on the MuST-C dataset, a widely used ST benchmark. Our experiments demonstrate that WACO outperforms the best baseline methods by 0.7-8.5 BLEU points with only 1-hour parallel data. Code is available at https://anonymous.4open.science/r/WACO .
translated by 谷歌翻译
在本文中,我们介绍了一个高质量的大规模基准数据集,用于英语 - 越南语音翻译,其中有508音频小时,由331k的三胞胎组成(句子长度的音频,英语源笔录句,越南人目标subtitle句子)。我们还使用强基础进行了经验实验,发现传统的“级联”方法仍然优于现代“端到端”方法。据我们所知,这是第一个大规模的英语 - 越南语音翻译研究。我们希望我们的公开数据集和研究都可以作为未来研究和英语语音翻译应用的起点。我们的数据集可从https://github.com/vinairesearch/phost获得
translated by 谷歌翻译
虽然已经提出了许多背景感知神经机器转换模型在翻译中包含语境,但大多数模型在句子级别对齐的并行文档上培训结束到底。因为只有少数域(和语言对)具有此类文档级并行数据,所以我们无法在大多数域中执行准确的上下文感知转换。因此,我们通过将文档级语言模型结合到解码器中,提出了一种简单的方法将句子级转换模型转换为上下文感知模型。我们的上下文感知解码器仅在句子级并行语料库和单语演模板上构建;因此,不需要文档级并行数据。在理论上,这项工作的核心部分是使用上下文和当前句子之间的点亮互信息的语境信息的新颖表示。我们以三种语言对,英语到法语,英语到俄语,以及日语到英语,通过评估,通过评估以及对上下文意识翻译的对比测试。
translated by 谷歌翻译
Speech translation (ST) is the task of directly translating acoustic speech signals in a source language into text in a foreign language. ST task has been addressed, for a long time, using a pipeline approach with two modules : first an Automatic Speech Recognition (ASR) in the source language followed by a text-to-text Machine translation (MT). In the past few years, we have seen a paradigm shift towards the end-to-end approaches using sequence-to-sequence deep neural network models. This paper presents our efforts towards the development of the first Broadcast News end-to-end Arabic to English speech translation system. Starting from independent ASR and MT LDC releases, we were able to identify about 92 hours of Arabic audio recordings for which the manual transcription was also translated into English at the segment level. These data was used to train and compare pipeline and end-to-end speech translation systems under multiple scenarios including transfer learning and data augmentation techniques.
translated by 谷歌翻译
Neural Machine Translation (NMT) is an end-to-end learning approach for automated translation, with the potential to overcome many of the weaknesses of conventional phrase-based translation systems. Unfortunately, NMT systems are known to be computationally expensive both in training and in translation inference -sometimes prohibitively so in the case of very large data sets and large models. Several authors have also charged that NMT systems lack robustness, particularly when input sentences contain rare words. These issues have hindered NMT's use in practical deployments and services, where both accuracy and speed are essential. In this work, we present GNMT, Google's Neural Machine Translation system, which attempts to address many of these issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers using residual connections as well as attention connections from the decoder network to the encoder. To improve parallelism and therefore decrease training time, our attention mechanism connects the bottom layer of the decoder to the top layer of the encoder. To accelerate the final translation speed, we employ low-precision arithmetic during inference computations. To improve handling of rare words, we divide words into a limited set of common sub-word units ("wordpieces") for both input and output. This method provides a good balance between the flexibility of "character"-delimited models and the efficiency of "word"-delimited models, naturally handles translation of rare words, and ultimately improves the overall accuracy of the system. Our beam search technique employs a length-normalization procedure and uses a coverage penalty, which encourages generation of an output sentence that is most likely to cover all the words in the source sentence. To directly optimize the translation BLEU scores, we consider refining the models by using reinforcement learning, but we found that the improvement in the BLEU scores did not reflect in the human evaluation. On the WMT'14 English-to-French and English-to-German benchmarks, GNMT achieves competitive results to state-of-the-art. Using a human side-by-side evaluation on a set of isolated simple sentences, it reduces translation errors by an average of 60% compared to Google's phrase-based production system.
translated by 谷歌翻译
Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel data for training. Targetside monolingual data plays an important role in boosting fluency for phrasebased statistical machine translation, and we investigate the use of monolingual data for NMT. In contrast to previous work, which combines NMT models with separately trained language models, we note that encoder-decoder NMT architectures already have the capacity to learn the same information as a language model, and we explore strategies to train with monolingual data without changing the neural network architecture. By pairing monolingual training data with an automatic backtranslation, we can treat it as additional parallel training data, and we obtain substantial improvements on the WMT 15 task English↔German (+2.8-3.7 BLEU), and for the low-resourced IWSLT 14 task Turkish→English (+2.1-3.4 BLEU), obtaining new state-of-the-art results. We also show that fine-tuning on in-domain monolingual and parallel data gives substantial improvements for the IWSLT 15 task English→German.
translated by 谷歌翻译
自动副标题是将视听产品的语音自动转化为短文本的任务,换句话说,字幕及其相应的时间戳。生成的字幕需要符合多个空间和时间要求(长度,阅读速度),同时与语音同步并以促进理解的方式进行分割。鉴于其相当大的复杂性,迄今为止,通过分别处理转录,翻译,分割为字幕并预测时间戳的元素来解决自动字幕。在本文中,我们提出了第一个直接自动字幕模型,该模型在单个解决方案中从源语音中生成目标语言字幕及其时间戳。与经过内外数据和外域数据训练的最先进的级联模型的比较表明,我们的系统提供了高质量的字幕,同时在整合性方面也具有竞争力,并具有维护单个模型的所有优势。
translated by 谷歌翻译
The word alignment task, despite its prominence in the era of statistical machine translation (SMT), is niche and under-explored today. In this two-part tutorial, we argue for the continued relevance for word alignment. The first part provides a historical background to word alignment as a core component of the traditional SMT pipeline. We zero-in on GIZA++, an unsupervised, statistical word aligner with surprising longevity. Jumping forward to the era of neural machine translation (NMT), we show how insights from word alignment inspired the attention mechanism fundamental to present-day NMT. The second part shifts to a survey approach. We cover neural word aligners, showing the slow but steady progress towards surpassing GIZA++ performance. Finally, we cover the present-day applications of word alignment, from cross-lingual annotation projection, to improving translation.
translated by 谷歌翻译
这项工作适用于最低贝叶斯风险(MBR)解码,以优化翻译质量的各种自动化指标。机器翻译中的自动指标最近取得了巨大的进步。特别是,在人类评级(例如BLEurt,或Comet)上微调,在与人类判断的相关性方面是优于表面度量的微调。我们的实验表明,神经翻译模型与神经基于基于神经参考度量,BLEURT的组合导致自动和人类评估的显着改善。通过与经典光束搜索输出不同的翻译获得该改进:这些翻译的可能性较低,并且较少受到Bleu等表面度量的青睐。
translated by 谷歌翻译
最先进的编码器模型(例如,用于机器翻译(MT)或语音识别(ASR))作为原子单元构造并端到端训练。没有其他模型的任何组件都无法(重新)使用。我们描述了Legonn,这是一种使用解码器模块构建编码器架构的过程,可以在各种MT和ASR任务中重复使用,而无需进行任何微调。为了实现可重复性,每个编码器和解码器模块之间的界面都基于模型设计器预先定义的离散词汇,将其接地到边缘分布序列。我们提出了两种摄入这些边缘的方法。一个是可区分的,可以使整个网络的梯度流动,另一个是梯度分离的。为了使MT任务之间的解码器模块的可移植性用于不同的源语言和其他任务(例如ASR),我们引入了一种模态不可思议的编码器,该模态编码器由长度控制机制组成,以动态调整编码器的输出长度,以匹配预期的输入长度范围的范围预训练的解码器。我们提出了几项实验来证明Legonn模型的有效性:可以重复使用德国英语(DE-EN)MT任务的训练有素的语言解码器模块,而没有对Europarl English ASR和ROMANIAN-ENGLISH进行微调(RO)(RO)(RO)(RO) -en)MT任务以匹配或击败相应的基线模型。当针对数千个更新的目标任务进行微调时,我们的Legonn模型将RO-EN MT任务提高了1.5个BLEU点,并为Europarl ASR任务降低了12.5%的相对减少。此外,为了显示其可扩展性,我们从三个模块中构成了一个legonn ASR模型 - 每个模块都在三个不同数据集的不同端到端训练的模型中学习 - 将降低的减少降低到19.5%。
translated by 谷歌翻译
Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem. Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary. In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units. This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations). We discuss the suitability of different word segmentation techniques, including simple character ngram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English→German and English→Russian by up to 1.1 and 1.3 BLEU, respectively.
translated by 谷歌翻译
Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT'14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.8 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which is close to the previous best result on this task. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
translated by 谷歌翻译
本文介绍了流媒体和非流定向晶体翻译的统一端到端帧工作。虽然非流媒体语音翻译的培训配方已经成熟,但尚未建立流媒体传播的食谱。在这项工作中,WEFOCUS在开发一个统一的模型(UNIST),它从基本组成部分的角度支持流媒体和非流媒体ST,包括培训目标,注意机制和解码政策。对最流行的语音到文本翻译基准数据集,MERE-C的实验表明,与媒体ST的BLEU评分和延迟度量有更好的折衷和液化标准端到端基线和级联模型。我们将公开提供我们的代码和评估工具。
translated by 谷歌翻译
Direct speech-to-speech translation (S2ST), in which all components can be optimized jointly, is advantageous over cascaded approaches to achieve fast inference with a simplified pipeline. We present a novel two-pass direct S2ST architecture, {\textit UnitY}, which first generates textual representations and predicts discrete acoustic units subsequently. We enhance the model performance by subword prediction in the first-pass decoder, advanced two-pass decoder architecture design and search strategy, and better training regularization. To leverage large amounts of unlabeled text data, we pre-train the first-pass text decoder based on the self-supervised denoising auto-encoding task. Experimental evaluations on benchmark datasets at various data scales demonstrate that UnitY outperforms a single-pass speech-to-unit translation model by 2.5-4.2 ASR-BLEU with 2.83x decoding speed-up. We show that the proposed methods boost the performance even when predicting spectrogram in the second pass. However, predicting discrete units achieves 2.51x decoding speed-up compared to that case.
translated by 谷歌翻译
The machine translation mechanism translates texts automatically between different natural languages, and Neural Machine Translation (NMT) has gained attention for its rational context analysis and fluent translation accuracy. However, processing low-resource languages that lack relevant training attributes like supervised data is a current challenge for Natural Language Processing (NLP). We incorporated a technique known Active Learning with the NMT toolkit Joey NMT to reach sufficient accuracy and robust predictions of low-resource language translation. With active learning, a semi-supervised machine learning strategy, the training algorithm determines which unlabeled data would be the most beneficial for obtaining labels using selected query techniques. We implemented two model-driven acquisition functions for selecting the samples to be validated. This work uses transformer-based NMT systems; baseline model (BM), fully trained model (FTM) , active learning least confidence based model (ALLCM), and active learning margin sampling based model (ALMSM) when translating English to Hindi. The Bilingual Evaluation Understudy (BLEU) metric has been used to evaluate system results. The BLEU scores of BM, FTM, ALLCM and ALMSM systems are 16.26, 22.56 , 24.54, and 24.20, respectively. The findings in this paper demonstrate that active learning techniques helps the model to converge early and improve the overall quality of the translation system.
translated by 谷歌翻译